Advertisement

A Multi-process Manufacturing Approach Based on STEP-NC Data Model

Conference paper

Abstract

Multi-process manufacturing calls for various competences and expertise. STEP-NC object-oriented approach proposes to unify several manufacturing processes in a common data model. Furthermore, CNC controllers are fully integrated into CAD/CAM/CNC numerical data chain. Thus, next generation of CNC machine tools promises to be more open, intelligent and interoperable. This chapter first proposes a simulation and optimization model for multi-process manufacturing environments by using STEP-NC. Then, a practical implementation of the developed concepts is carried out on the manufacturing equipments of the laboratory.

Keywords

Multi-process manufacturing – STEP – STEP-NC – Process planning Simulation – Extended CNC 

References

  1. 1.
    Erdel, B.P. (2003) High-speed machining. Society of Manufacturing EngineersGoogle Scholar
  2. 2.
    Hopkinson, N., Hague, R., Dickens, P. (2006) Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley, New York.Google Scholar
  3. 3.
    Ho, K.H., Newman, S.T. (2003) State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13):1287–1300.CrossRefGoogle Scholar
  4. 4.
    Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., Allwood, J. (2005) Asymmetric single point incremental forming of sheet metal. CIRP Annals – Manufacturing Technology, 54(2):88–114.CrossRefGoogle Scholar
  5. 5.
    Edwards, K.L. (2003) Designing of engineering components for optimal materials and manufacturing process utilisation. Materials & Design, 24(5):355–366.CrossRefGoogle Scholar
  6. 6.
    Xu, X.W., Newman, S.T. (2006) Making CNC machine tools more open, interoperable and intelligent – a review of the technologies. Computers in Industry, 57(2):141–152.CrossRefGoogle Scholar
  7. 7.
    Balic, J. (2007) Intelligent CAD/CAM system for CNC programming – an overview. Advances in Production Engineering & Management, 1:13–21.Google Scholar
  8. 8.
    Kurita, T., Hattori, M. (2005) Development of new-concept desk top size machine tool. International Journal of Machine Tools and Manufacture, 45(7–8):959–965.CrossRefGoogle Scholar
  9. 9.
    Michael, J.P. (2001) Introduction to ISO 10303 – the STEP standard for product data exchange. Journal of Computing and Information Science in Engineering, 1(1):102–103.CrossRefGoogle Scholar
  10. 10.
    14649-1 I. (2003) ISO 14649 part 1 – industrial automation systems and integration – physical device control – data model for computerized numerical controllers – part 1: Overview and fundamental principles, TC 184/SC 1.Google Scholar
  11. 11.
    10303-238 I. (2007) ISO 10303-238 – industrial automation systems and integration – product data representation and exchange – part 238: application protocol: application interpreted model for computerized numerical controllers, TC 184/SC 4.Google Scholar
  12. 12.
    Newman, S.T., Nassehi, A., Xu, X.W., Rosso Jr, R.S.U., Wang, L., Yusof, Y., Ali, L., Liu, R., Zheng, L.Y., Kumar, S., Vichare, P., Dhokia, V. (2008) Strategic advantages of interoperability for global manufacturing using CNC technology. Robotics and Computer-Integrated Manufacturing, 24(6):699–708.CrossRefGoogle Scholar
  13. 13.
    ISO_14649-10 (2004) ISO 14649 part 10 – industrial automation systems and integration – physical device control – data model for computerized numerical controllers – Part 10: general process data, ISO TC 184/SC1/WG7/FDIS.Google Scholar
  14. 14.
    14649-11 I. (2004) ISO 14649 part 11 – industrial automation systems and integration – physical device control – data model for computerized numerical controllers – part 11: Process data for milling, TC 184/SC 1.Google Scholar
  15. 15.
    14649-12 I. (2005) ISO 14649 part 12 – industrial automation systems and integration – physical device control – data model for computerized numerical controllers – part 12: Process data for turning, TC 184/SC 1.Google Scholar
  16. 16.
    Rosso, R.S.U., Newman, S.T., Rahimifard, S. (2004) The adoption of STEP-NC for the manufacture of asymmetric rotational components. Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 218(11):1639–1644.Google Scholar
  17. 17.
    ISO14649-13 (2003) ISO14649 part13 – industrial automation systems and integration – physical device control-data model for computerized numerical controllers – part 13: Process data for Wire-EDM, TC 184/SC 1.Google Scholar
  18. 18.
    Sokolov, A., Richard, J., Nguyen, V.K., Stroud, I., Maeder, W., Xirouchakis, P. (2006) Algorithms and an extended STEP-NC-compliant data model for wire electro discharge machining based on 3D representations. International Journal of Computer Integrated Manufacturing, 19(6):603–613.CrossRefGoogle Scholar
  19. 19.
    Bonnard, R., Mognol, P., Hascoët, J.-Y. (2008) Rapid prototyping project description in STEP-NC Model. Proceedings of 6th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, Naples, Italy.Google Scholar
  20. 20.
    Babic, B., Nesic, N., Miljkovic, Z. (2008) A review of automated feature recognition with rule-based pattern recognition. Computers in Industry, 59(4):321–337.CrossRefGoogle Scholar
  21. 21.
    Barnes, S., Timms, N., Bryden, B., Pashby, I. (2003) High power diode laser cladding. Journal of Materials Processing Technology, 138(1–3):411–416.CrossRefGoogle Scholar
  22. 22.
    Xu, X.W., Wang, H., Mao, J., Newman, S.T., Kramer, T.R., Proctor, F.M., Michaloski, J.L. (2005) STEP-compliant NC research: The search for intelligent CAD/CAPP/CAM/CNC integration. International Journal of Production Research, 43(17):3703–3743.CrossRefGoogle Scholar
  23. 23.
    Laguionie, R., Rauch, M., Hascoet, J.-Y. (2008) Toolpaths programming in an intelligent STEP-NC manufacturing context. Journal of Machine Engineering, 8(1):33–43.Google Scholar
  24. 24.
    Hascoet, J.Y., Laguionie, R. (29-31 October 2008) STEP-NC research at the IRCCyN, in 56th ISO TC 184/SC1 Plenary Meeting: Busan (KOREA).Google Scholar
  25. 25.
    Laguionie, R., Hascoet, J.-Y., Suh, S.-H. (2009) A new STEP-NC based CNC interface for high speed machining. 12th Conference on Modelling of Machining Operations, San Sebastian, Spain.Google Scholar
  26. 26.
    Rauch, M., Laguionie, R., Hascoet, J.-Y. (2009) Achieving a STEP-NC enabled advanced NC programming environment. In: Xu, X., Nee, A.Y.C. (Eds.) Advanced Design and Manufacturing Based on STEP. Springer, London, pp. 197–214.CrossRefGoogle Scholar
  27. 27.
    Martin, Y.S., Gimenez, M., Rauch, M., Hascoet, J.-Y. (2006) VERNE – A New 5-Axes Hybrid Architecture Machining Centre. 5th Chemnitzer Parallelkinematik Seminar, Chemnitz, Germany.Google Scholar
  28. 28.
    Dugas, A., Lee, J.J., Terrier, M., Hascoet, J.-Y. (2003) Development of a machining simulator considering machine behavior. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(9): 1333–1339.CrossRefGoogle Scholar
  29. 29.
    Suh, S.H., Cho, J.H., Hascoet, J.Y. (1996) Incorporation of tool deflection in tool path computation: Simulation and analysis. SME Journal of Manufacturing Systems, 15(3):190–199.CrossRefGoogle Scholar
  30. 30.
    Hascoet, J.-Y., Rauch, M. (2006) A generic method for real time adaptative force control in manufacturing operations using CNC data. International Conference on High Speed Milling, Suzhou, China.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597Nantes Cedex 3France

Personalised recommendations