Skip to main content

ACLODS – A Holistic Framework for Environmentally Friendly Product Lifecycle Design

  • Conference paper
  • First Online:
Global Product Development

Abstract

Design for Environment (DfE) is an approach to design where all the environmental impacts of a product are considered over the entire life cycle of a product. Most DfE tools are conceptual in nature, and there is little adoption of these in industry. This chapter discusses the development of a holistic framework that should help in both generation and evaluation of environmentally friendly product life cycle proposals. The overall approach is to investigate literature to analyse the existing guidelines, methods, tools and methodologies for environmentally friendly product design, in order to identify the requirements for a holistic framework for design to reduce the environmental impact of a product lifecycle proposal. An ideal framework to satisfy these requirements is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Züst, R. (1996) Sustainable products and processes, in: ECO-performance’96, 3rd International Seminar on Life Cycle Engineering CIRP, Verlag Industrielle Organisation, Zurich, pp. 5–10.

    Google Scholar 

  2. Sherwin, C., Bhamra, T. (1999) Beyond engineering: EcoDesign as a proactive approach to product innovation. Proceedings of Ecodesign99, Feb 1–3, 1999, Tokyo, pp. 41–46.

    Google Scholar 

  3. Shibaike, N. (2001) Incorporating environmentally conscious materials selection in CAD system. Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Ecodesign ’01, December 11–15, 2001, Tokyo, pp. 1098–1101.

    Google Scholar 

  4. Gómez-Navarro, T., et al. (2001) Design for energy efficiency. International conference on engineering design, ICED ’01, August 21–23, 2001, Glasgow, pp. 613–620.

    Google Scholar 

  5. Rosemann, B., Meerkamm, H., Trautner, St., Feldmann, K. (1999) Design for recycling, recycling data management and optimal end-of-life planning based on recycling-graphs. International Conference on Engineering Design ICED ’99, Vol. 3, August 1999, Munich, pp. 1471–1476.

    Google Scholar 

  6. Tonnelier, P., Millet, D., le Coq, M., Michaud, P. (2001) Design for recovery – evaluation of recovery aptitude of a vehicle. International Conference on Engineering Design, ICED ’01, Vol. 1, August 2001, Glasgow, pp. 661–668.

    Google Scholar 

  7. Brezet, H., Hemel, C. (1997) Ecodesign – A Promising Approach to Sustainable Production and Consumption. Rathenau Institute, TU Delft and UNEP, Paris.

    Google Scholar 

  8. Ries, G., Winkler, R., Zust, R. (1999) Barriers for a successful integration of environmental aspects in product design Proceedings of Ecodesign99, December 1999, Tokyo, pp. 527–532.

    Google Scholar 

  9. Diehl, J.C., Soumitri, G.V., Mestre, A. (2001) Ecodesign methodology development within the Indian European Ecodesign program. Proceedings of Ecodesign’01, December 2001, Tokyo, pp. 184–189.

    Google Scholar 

  10. Harsch, M. (2000) Life cycle simulation as R&D tool. Total Life Cycle Conference and Exposition, April 2000, Detroit, MI, USA, Session: LC Methodology. Document No. 2000-01-1500.

    Google Scholar 

  11. Kortman, J., van Berkel, R., Lafleur, M. (1995) Towards an environmental design toolbox for complex products; Preliminary results and experiences from selected projects. CONCEPT – Clean Electronics Products and Technology, 9–11 October 1995, Edinburgh, Scotland.

    Google Scholar 

  12. Romero-Hernández, S., Romero- Hernández, O. (2003) Integration of effective engineering design, innovation and environmental performance in the product life cycle management. Proceedings of PLM Symposium, 16–18 July 2003, Bangalore.

    Google Scholar 

  13. Nissen, U. (1995) A methodology for the development of cleaner products: The ideal-eco-product approach. Journal of Cleaner Production, 3(1–2):83–87.

    Article  Google Scholar 

  14. Senthil, K.D., Ong, S.K., Nee, A.Y.C., Tan, R.B.H. (2003, January) A proposed tool to integrate environmental and economical assessments of products. Environmental Impact Assessment Review, 23(1):51–72.

    Article  Google Scholar 

  15. Anderl, R., Weißmantel, H. (1999) Design for environment – A computer-based cooperative method to consider the entire life cycle. Ecodesign 1999, Tokyo, Japan, pp. 380–387.

    Google Scholar 

  16. Roche, T., Man, E., Browne, J. (2001) Development of a CAD integrated DFE Workbench tool. International Symposium on Electronics and the Environment, Denver, 2001, pp. 223–226.

    Google Scholar 

  17. Spath, D., Scharer, M., Trender, L. (1999) Coefficient based assessment methods to support life cycle design. Ecodesign 1999, Tokyo, Japan, pp. 522–526.

    Google Scholar 

  18. Wimmer, W. (1999) The ECODESIGN checklist method: A redesign tool for environmental product improvements. Ecodesign 1999, pp. 685–689.

    Google Scholar 

  19. McAloone, T.C., Evans, S. (1997) How good is your environmental design process? A self assessment technique. International Conference on Engineering Design ICED97, August 19–21, 1997 Tampere, pp. 625–630.

    Google Scholar 

  20. Grüner, C., Birkhofer, H. (1999) Decision support for selecting design strategies in DfE. International conference on engineering design ICED99, August 24–26, 1999, Munich, pp. 1089–1092.

    Google Scholar 

  21. Reinhold Bopp, M.S., Bullinger, H.-J., Warschat, J. (1999) Development of a design methodology to generate end-of-life value. International conference on engineering design ICED99, August 24–26, 1999, Munich, pp. 1093–1096.

    Google Scholar 

  22. Suiran, Y.U., Kato, S., Kimura, F. (2001) EcoDesign for product variety: A multi-objective optimisation framework. EcoDesign2001, Tokyo, Japan, pp. 293–298.

    Google Scholar 

  23. Otto, H.E., Kimura, F., Mandorli, F., Germani, M. (2003) Integration of CAD models with LCA. Third International Symposium on Environmentally Coonscious Design and Inverse Manufacturing EcoDesign2003, December 8–11, 2003, Tokyo, Japan, pp. 155–162.

    Google Scholar 

  24. Lindahl, M. (2001) Environmental effect analysis – How does the method stand in relation to lessons learned from the use of other design for environment methods. Ecodesign2001, Tokyo, Japan, pp. 864–869.

    Google Scholar 

  25. Faneye, O.B., Anderl, R. (2001) Life cycle process knowledge – Application during product design. Ecodesign2001, Tokyo, Japan, pp. 155–161.

    Google Scholar 

  26. Park, J.-H., Seo, K.-K. (2003) Knowledge-based approximate life cycle assessment system in the collaborative design environment. Third International Symposium on Environmentally Coonscious Design and Inverse Manufacturing EcoDesign2003, December 8–11, 2003, Tokyo, Japan, pp. 499–503.

    Google Scholar 

  27. Kurukawa, K., Kiriyama, T. (1999) Life Cycle Design Support based on environmental information sharing. Ecodesign1999, Tokyo, Japan, pp. 138–142.

    Google Scholar 

  28. Jean, P., Coulon, R., Timmons, D. (1999) Building an ecodesign toolkit for the electronics industry. Ecodesign1999, Tokyo, Japan, pp. 701–706.

    Google Scholar 

  29. Takata, S., Yamada, A., Inoue, Y. (1999) Computer-aided facility life cycle management. Ecodesign 1999, Tokyo, Japan, pp. 856–861.

    Google Scholar 

  30. Rebitzer, G., Hunkeler, D. (2003) Life cycle costing in LCM: Ambitions, opportunities, and limitations; discussing a framework. International Journal of LCA, 8(5):253–256.

    Article  Google Scholar 

  31. Ernzer, M., Bey, N. (2003) The link between life cycle design and innovation. Third International Symposium on Environmentally Coonscious Design and Inverse Manufacturing EcoDesign2003, December 8–11, 2003, Tokyo, Japan, pp. 559–566.

    Google Scholar 

  32. Dewulf, W., Duflou, J. (2004), The ecodesign knowledge system – Supporting ecodesign education as well as ecodesign knowledge management. International Design Conference – DESIGN 2004, May 18–21, 2004, Dubrovnik.

    Google Scholar 

  33. Maxwell, D., van der Vorst, R. (2003) Developing sustainable products and services. Journal of Cleaner Production, 11:883–895.

    Article  Google Scholar 

  34. Nielsen, P.H., Wenzel, H. (2002) Integration of environmental aspects in product development: A stepwise procedure based on quantitative life cycle assessment. Journal of Cleaner Production, 10:247–257.

    Article  Google Scholar 

  35. Curran, M.A., Schenck, R. (2000) Framework for environmental decision making, FRED: A tool for environmentally preferable purchasing. Presentation at the International Conference on Life Cycle Assessment (InLCA), April 27, 2000, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kota, S., Chakrabarti, A. (2011). ACLODS – A Holistic Framework for Environmentally Friendly Product Lifecycle Design. In: Bernard, A. (eds) Global Product Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15973-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15973-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15972-5

  • Online ISBN: 978-3-642-15973-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics