Advertisement

Robust State and Parameter Estimation for Nonlinear Continuous-Time Systems in a Set-Membership Context

Chapter
Part of the Mathematical Engineering book series (MATHENGIN, volume 3)

Abstract

This chapter deals with joint state and parameter estimation for nonlinear continuous-time systems. Based on an appropriate LPV approximation, the problem is formulated in terms of a set adaptive observer design problem which can be efficiently solved. The resolution methodology avoids the exponential complexity obstruction often met in set-membership parameter estimation. The efficacy of the proposed set adaptive observers is demonstrated on several examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besanc¸on, G.: Nonlinear observers and applications. Lecture Notes in Control and Inforamtion Science. Springer Verlag, Berlin (2007)Google Scholar
  2. 2.
    Nijmeijer H., Fossen, T.I.: New Directions in Nonlinear Observer Design. Springer-Verlag, London (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Lee, L.H.: Identification and Robust Control of Linear Parameter-Varying Systems. PhDthesis, University of California at Berkeley, Berkeley, California (1997)Google Scholar
  4. 4.
    Tan, W.: Applications of Linear Parameter-Varying Control Theory. PhD-thesis, Dept. of Mechanical Engineering, University of California at Berkeley (1997)Google Scholar
  5. 5.
    Hansen, R.E.: Global optimization using interval analysis. CRC, 2nd edition (2004)Google Scholar
  6. 6.
    Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)MATHGoogle Scholar
  7. 7.
    Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. AMS, Providence (1995)MATHGoogle Scholar
  8. 8.
    Bogoliubov, N.N., Mitropolskii, Yu.A.: Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach, New York (1961)Google Scholar
  9. 9.
    Sanders, J., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)MATHGoogle Scholar
  10. 10.
    Kletting, M., Verified Methods for State and Parameter Estimators for Nonlinear Uncertain Systems with Applications in Engineering. PhD-thesis, Institute of Measurement, Control, and Microtechnology, University of Ulm, Germany (2009)Google Scholar
  11. 11.
    Bokor, J., Balas, G.: Detection Filter Design for LPV Systems - a Geometric Approach. Automatica 40, 511–518 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Marcos, A., Balas, G.: Development of linear-parameter-varying models for aircraft. J. Guidance, Control, Dynamics 27(2), 218–228 (2004)Google Scholar
  13. 13.
    Shamma, J., Cloutier, J.: Gain-scheduled missile autopilot design using linear parameter varying transformations. J. Guidance, Control, Dynamics 16(2), 256–261 (1993)Google Scholar
  14. 14.
    Ra¨ıssi, T., Videau, G., Zolghadri, A.: Interval observers design for consistency checks of nonlinear continuous-time systems. Automatica 46(3), 518–527 (2010)Google Scholar
  15. 15.
    Jaulin, L.: Nonlinear bounded-error state estimation of continuous time systems. Automatica 38(6), 1079–1082 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ra¨ıssi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10), 1771–1777 (2004)Google Scholar
  17. 17.
    Kieffer, K. Walter, E.: Guaranteed nonlinear state estimator for cooperative systems. Numerical Algorithms 37, 187–198 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mu¨ller, M.: U¨ ber das fundamental theorem in der the orieder gewohnlichen differential gleichungen. Math. Z 26, 619–645 (1920)Google Scholar
  19. 19.
    Bernard, O., Gouz´e, J.L.: Closed loop observers bundle for uncertain biotechnological models. J. Process Control 14, 765–774 (2004)Google Scholar
  20. 20.
    Gouz´e, J.L., Rapaport, A., Hadj-Sadok, M.Z.: Interval observers for uncertain biological systems. Ecological Modeling 133, 46–56 (2000)Google Scholar
  21. 21.
    Moisan, M., Bernard, O., Gouz´e, J.L.: Near optimal interval observers bundle for uncertain bioreactors. Automatica 45(1), 291–295 (2009)Google Scholar
  22. 22.
    Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Johnson, T., Tucker, W.: Rigorous parameter reconstruction for differential equations with noisy data. Automatica 44(9), 2422–2426 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Efimov, D.: Dynamical adaptive synchronization, Int. J. Adaptive Control and Signal Processing 20(9), 491–507 (2006)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Xu, A., Zhang, Q.: Residual Generation for Fault Diagnosis in Linear Time-Varying Systems. IEEE Trans. Autom. Control 49(5), 767–772 (2004)CrossRefGoogle Scholar
  26. 26.
    Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems. IEEE Trans. Autom. Control (47(3), 525–529 (2002)Google Scholar
  27. 27.
    Sontag, E.D., Wang, Y.: Notions of input to output stability. Systems and Control Letters 38, 235–248 (1999)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Efimov, D., Ra¨ıssi, T., Zolghadri, A.: Adaptive set observers design for nonlinear continuoustime systems: Application to fault detection and diagnosis. IEEE Trans. Autom. Control, revised.Google Scholar
  29. 29.
    Fradkov, A.L., Nikiforov, V.O., Andrievsky, B.R.: Adaptive observers for nonlinear nonpassifiable systems with application to signal transmission. Proc. 41th IEEE Conf. Decision and Control, 4706–4711, Las Vegas (2002)Google Scholar
  30. 30.
    Meslem, N., Ramdani, N., Candau, Y.: Interval Observers for Uncertain Nonlinear Systems. Application to bioreactors. Proc. 17th IFAC World Congress, 9667–9672, Seoul, (2008)Google Scholar
  31. 31.
    Efimov D.V., Fradkov A.L. Hybrid adaptive resonance control of vibration machines: the double mass case. Proc. 3rd IFAC Workshop Periodic Control Systems (PSYCO’07), Saint-Petersburg, (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IMS-labUniversity of BordeauxTalenceFrance

Personalised recommendations