Two Approaches for Guaranteed State Estimation of Nonlinear Continuous-Time Models

Chapter
Part of the Mathematical Engineering book series (MATHENGIN, volume 3)

Abstract

This paper deals with the estimation of the state vector of a nonlinear continuous-time state-space model, such as those frequently encountered in the context of knowledge-based modeling. Unknown and possibly time-varying parameters may be included in an extended state vector to deal with the simultaneous estimation of state and parameters. Observations depending on the (possibly extended) state are assumed to take place at discrete measurement times. Given bounds on the size of the additive measurement errors, guaranteed estimation should then provide bounds on the possible values of the state at any given time. Two recently developed approaches are presented and their performance is compared on a simple test case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing 4, 361–369 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chernousko, F.L.: Optimal guaranteed estimates of indeterminacies with the aid of ellipsoids. Engrg. Cybernetics 18, 1–9 (1980)Google Scholar
  3. 3.
    Chernousko, F.L.: State Estimation for Dynamic Systems. CRC Press, Boca Raton, FL (1994)Google Scholar
  4. 4.
    Gennat, M., Tibken, B.: Simulation of uncertain systems with guaranteed bounds. In: 11th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics. Fukuoka, Japan (2004)Google Scholar
  5. 5.
    Gouz´e, J.L., Rapaport, A., Hadj-Sadok, Z.M.: Interval observers for uncertain biological systems. Journal of Ecological Modelling (133), 45–56 (2000)Google Scholar
  6. 6.
    Hoefkens, J., Berz, M., Makino, K.: Efficient high-order methods for ODEs and DAEs. In: G. Corliss, C. Faure, A. Griewank (eds.) Automatic Differentiation : From Simulation to Optimization, pp. 341–351. Springer-Verlag, New-York, NY (2001)Google Scholar
  7. 7.
    Jaulin, L.: Nonlinear bounded-error state estimation of continuous-time systems. Automatica 38, 1079–1082 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer-Verlag, London (2001)MATHGoogle Scholar
  9. 9.
    Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kieffer, M.,Walter, E.: Guaranteed parameter estimation for cooperative systems. In: L. Benvenuti, A. De Santis, L. Farina (eds.) Positive Systems – LNCIS 294, pp. 103–110. Springer, Berlin (2003)Google Scholar
  11. 11.
    Kieffer, M., Walter, E.: Interval analysis for guaranteed nonlinear parameter and state estimation. Mathematical and Computer Modelling of Dynamic Systems 11(2), 171–181 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kieffer, M., Walter, E.: Guaranteed nonlinear state estimation for continuous–time dynamical models from discrete–time measurements. In: Preprints of the 5th IFAC Symposium on Robust Control Design (2006)Google Scholar
  13. 13.
    Kieffer, M., Walter, E.: Guaranteed estimation of the parameters of nonlinear continuous–time models: contributions of interval analysis. Int. J. Adap. Contr. Sig. Proc. (2010). Doi :  10.1002/acs.1194
  14. 14.
    Kletting, M.: Verified Methods for State and Parameter Estimators for Nonlinear Uncertain Systems with Applications in Engineering. Ph.D. thesis, Institute of Measurement, Control, and Microtechnology,University of Ulm, Germany (2009)Google Scholar
  15. 15.
    K¨uhn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998)Google Scholar
  16. 16.
    Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Birkh¨auser, Boston, MA (1997)Google Scholar
  17. 17.
    Lin, Y., Stadtherr, M.A.: Validated solution of ODEs with parametric uncertainties. In: W. Marquardt, C. Pantelides (eds.) Proc. 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, Computer Aided Chemical Engineering, vol. 21, pp. 167 – 172. Elsevier (2006). DOI 10. 1016/S1570-7946(06)80041-6. URL http://www.sciencedirect.com/science/article/B8G5G-4P37F2K-S/2/a22680956d2786784b23e88e9b272db6
  18. 18.
    Lohner, R.: Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value-problem. In: J.R. Cash, I. Gladwell (eds.) Computational Ordinary Differential Equations, pp. 425–435. Clarendon Press, Oxford (1992)Google Scholar
  19. 19.
    Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by preconditioning. International Journal of Differential Equations and Applications 10(4), 353–384 (2005)MathSciNetMATHGoogle Scholar
  20. 20.
    Makino, K., Berz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by shrink wrapping. International Journal of Differential Equations and Applications 10(4), 385–403 (2005)MathSciNetGoogle Scholar
  21. 21.
    Meslem, N., Ramdani, N., Candau, Y.: Guaranteed state bounding estimation for uncertain non linear continuous systems using hybrid automata. In: Proc. IFAC International Conference on Informatics in Control, Automation Robotics. Funchal, Madeira (2008)Google Scholar
  22. 22.
    Meslem, N., Ramdani, N., Candau, Y.: Interval observers for uncertain nonlinear systems. application to bioreactors. In: Proc. IFAC World Congress, pp. 9667–9672. Seoul, Korea (2008)Google Scholar
  23. 23.
    Moisan, M., Bernard, O., Gouz´e, J.L.: Near optimal interval observers bundle for uncertain bioreactors. Automatica 45(1), 291–295 (2009)Google Scholar
  24. 24.
    Mu¨ller, M.: U¨ ber das Fundamentaltheorem in der Theorie der gewo¨hnlichen Differentialgleichungen. Math. Z. 26, 619–645 (1926)Google Scholar
  25. 25.
    Nedialkov, N.S., Jackson, K.R.: Methods for initial value problems for ordinary differential equations. In: U. Kulisch, R. Lohner, A. Facius (eds.) Perspectives on Enclosure Methods, pp. 219–264. Springer-Verlag, Vienna (2001)Google Scholar
  26. 26.
    Raissi, T., Ramdani, N., Candau, Y.: Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10), 1771–1777 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Raissi, T., Videau, G., Zolghadri, A.: Interval observer design for consistency checks of nonlinear continuous-time systems. Automatica 46(3), 518–527 (2010)MATHCrossRefGoogle Scholar
  28. 28.
    Rauh, A., Auer, E., Minisini, J., Hofer, E.P.: Extensions of ValEncIA-IVP for reduction of overestimation, for simulation of differential algebraic systems, and for dynamical optimization. Proc. Appl. Math. Mech. 7(1), 1023,0011023,002 (2007). DOI  10.1002/pamm.200700022
  29. 29.
    Rauh, A., Hofer, E.P., Auer, E.: VALENCIA-IVP: A comparison with other initial value problem solvers. In: Proc. 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), p. 36. IEEE Computer Society, Duisburg, Germany (2006). DOI  10.1109/SCAN.2006.47
  30. 30.
    Veres, S.M., Mayne, D.Q.: Geometric bounding toolbox. Tech. rep. URL http://www.sysbrain.com/gbt/
  31. 31.
    Walter, E., Kieffer, M.: Interval analysis for guaranteed nonlinear estimation. In: Proceedings of the 13th IFAC Symposium on System Identification (SYSID), pp. 259–270 (2003)Google Scholar
  32. 32.
    Walter, E., Kieffer, M.: Guaranteed nonlinear parameter estimation in knowledge–based models. Journal of Computational and Applied Mathematics 199(2), 277–285 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Multi-Function Airborne Radars (OPES22), Cassidian ElectronicsUlmGermany
  2. 2.Laboratoire des Signaux et Systèmes - CNRS - SUPELECUniv Paris-SudGif-sur-Yvette cedexFrance
  3. 3.LTCI - CNRS - Telecom ParisTechParisFrance

Personalised recommendations