Advertisement

Implementing a Rigorous ODE Solver Through Literate Programming

  • Nedialko S. Nedialkov
Chapter
Part of the Mathematical Engineering book series (MATHENGIN, volume 3)

Abstract

Interval numerical methods produce results that can have the power of a mathematical proof. Although there is a substantial amount of theoretical work on these methods, little has been done to ensure that an implementation of an interval method can be readily verified. However, when claiming rigorous numerical results, it is crucial to ensure that there are no errors in their computation. Furthermore, when such a method is used in a computer assisted proof, it would be desirable to have its implementation published in a form that is convenient for verification by human experts. We have applied Literate Programming (LP) to produce VNODE-LP, a C++ solver for computing rigorous bounds on the solution of an initial-value problem (IVP) for an ordinary differential equation (ODE).We have found LP well suited for ensuring that an implementation of a numerical algorithm is a correct translation of its underlying theory into a programming language: we can split the theory into small pieces, translate each of them, and keep mathematical expressions and the corresponding code close together in a unified document. Then it can be reviewed and checked for correctness by human experts, similarly to how a scientific work is examined in a peer-review process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D.: Setting 2 variables at a time yields a new lower bound for random 3-SAT. Tech. Rep. MSR-TR-99-96, Microsoft Research, Microsoft Corp., One Microsoft Way, Redmond, WA 98052 (1999)Google Scholar
  2. 2.
    Auer, E., Kecskem´ethy, A., T¨andl, M., Traczinski, H.: Interval algorithms in modelling of multibody systems. In: Numerical Software with Result Verification, LNCS, vol. 2991, pp. 132–159. Springer-Verlag (2004)Google Scholar
  3. 3.
    Berz, M.: COSY INFINITY version 8 reference manual. Technical Report MSUCL–1088, National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich. (1997)Google Scholar
  4. 4.
    Brown, B.M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M.: Eigenvalue bounds for the singular Sturm-Liouville problem with a complex potential. J. Phys. A:Math. Gen. 36(13), 3773–3787 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dietrich, S.: Adaptive verifizierte l¨osung gew¨ohnlicher differentialgleichungen. Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany (2003)Google Scholar
  6. 6.
    Goualard, F.: Gaol: Not just another interval library (version 2.0.2). http://sourceforge.net/projects/gaol/ (2006)Google Scholar
  7. 7.
    Hayes, W.: Rigorous shadowing of numerical solutions of ordinary differential equations by containment. Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, Canada (2001)Google Scholar
  8. 8.
    Hayes, W., Jackson, K.R.: Rigorous shadowing of numerical solutions of ordinary differential equations by containment. SIAM J. Numer. Anal. 42(5), 1948–1973 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ishii, D.: Simulation and verification of hybrid systems based on interval analysis and constraint programming. Ph.D. thesis, Graduate School of Science and Engineering, Waseda University, Japan (2010)Google Scholar
  10. 10.
    Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42, 269–284 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Johnson, A., Johnson, B.: Literate programming using noweb. Linux J., Article No 1 (1997)Google Scholar
  12. 12.
    Kieffer, M., Walter, E.: Nonlinear parameter and state estimation for cooperative systems in a bounded-error context. In: Numerical Software with Result Verification, LNCS, vol. 2991, pp. 107–123. Springer-Verlag (2004)Google Scholar
  13. 13.
    Kn¨uppel, O.: PROFIL/BIAS – a fast interval library. Computing 53(3–4), 277–287 (1994)Google Scholar
  14. 14.
    Knuth, D.E.: The WEB system of structured documentation. Stanford Computer Science Report CS980, Stanford University, Stanford, CA (1983)Google Scholar
  15. 15.
    Knuth, D.E.: Literate programming. Technical report STAN-CS-83-981, Stanford University, Department of Computer Science (1983)Google Scholar
  16. 16.
    Knuth, D.E.: Literate Programming. Center for the Study of Language and Information, Stanford, CA, USA (1992)MATHGoogle Scholar
  17. 17.
    Knuth, D.E., Levy, S.: The CWEB System of Structured Documentation. Addison-Wesley, Reading, Massachusetts (1993)Google Scholar
  18. 18.
    Lee, C.K.: Robust evaluation of differential geometry properties using interval arithmetic techniques. Master’s thesis, Massachusetts Institute of Technology, Department of Ocean Engineering (2005)Google Scholar
  19. 19.
    Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Kr¨amer, W.: FILIB++, a fast interval library supporting containment computations. ACM Trans. Math. Softw. 32(2), 299–324 (2006)Google Scholar
  20. 20.
    Lin, Y., Stadtherr, M.A.: Validated solution of initial value problems for ODEs with interval parameters. In: R.L. Muhanna, R.L. Mullen (eds.) Proceedings of 2nd NSF Workshop on Reliable Engineering Computing. Savannah, GA (2006)Google Scholar
  21. 21.
    Literate programming web site. http://www.literateprogramming.com Google Scholar
  22. 22.
    Lohner, R.J.: Einschließung der L¨osung gew¨ohnlicher Anfangs– und Randwertaufgaben und Anwendungen. Ph.D. thesis, Universit¨at Karlsruhe (1988)Google Scholar
  23. 23.
    Moore, A.P., Payne, C.N., Jr.: Increasing assurance with literate programming techniques. In: Proceedings of 11th Annual Conference on Computer Assurance. COMPASS ’96, pp. 187–198 (1996)Google Scholar
  24. 24.
    Mukundan, H., Ko, K.H., Maekawa, T., Sakkalis, T., Patrikalakis, N.M.: Tracing surface intersections with a validated ODE system solver. In: G. Elber, G. Taubin (eds.) Proceedings of the Ninth EG/ACM Symposium on Solid Modeling and Applications. Eurographics Press, June 2004 (2004)Google Scholar
  25. 25.
    Nedialkov, N.S.: Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, Canada, M5S 3G4 (1999)Google Scholar
  26. 26.
    Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: SCAN Conference Proceedings, http://www.computer.org/portal/web/csdl/doi/10.1109/SCAN.2006. 28 (2006)Google Scholar
  27. 27.
    Nedialkov, N.S.: VNODE-LP — a validated solver for initial value problems in ordinary differential equations. Tech. Rep. CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S 4K1 (2006). VNODE-LP is available at http://www.cas.mcmaster.ca/˜nedialk/vnodelp Google Scholar
  28. 28.
    Nedialkov, N.S., Jackson, K.R.: The design and implementation of a validated object-oriented solver for IVPs for ODEs. Tech. Rep. 6, Software Quality Research Laboratory, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S 4K1 (2002)Google Scholar
  29. 29.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comp. 105(1), 21–68 (1999)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  31. 31.
    Parnas, D.L.: Inspection of safety-critical software using program-function tables. In: Software fundamentals: collected papers by David L. Parnas, pp. 371–382. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)Google Scholar
  32. 32.
    Patrikalakis, N.M.,Maekawa, T., Ko, K.H.,Mukundan, H.: Surface to surface intersection. In: L. Piegl (ed.) International CAD Conference and Exhibition, CAD’04. Thailand (2004)Google Scholar
  33. 33.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)Google Scholar
  34. 34.
    Ramdani, N., Meslem, N., Ra¨ıssi, T., Candau, Y.: Set-membership identification of continuous-time systems. In: B. Ninness, H. Hjalmarsson (eds.) 14th IFAC Symposium on System Identification, 2006, vol. 14. IFAC (2007)Google Scholar
  35. 35.
    Rump, S.: Verification methods: Rigorous results using floating-point arithmetic. In: Acta Numerica, pp. 287–449. Cambridge University Press (2010)Google Scholar
  36. 36.
    Schrod, J.: The cweb class. CTAN, the Comprehensive TEX Archive Network (1995)Google Scholar
  37. 37.
    Schrod, J.: Typesetting cweave output. CTAN, the Comprehensive TEX Archive Network (1995)Google Scholar
  38. 38.
    Smith, L.M.C., Samadzadeh, M.H.: An annotated bibliography of literate programming. ACM SIGPLAN Notices 26(1), 14–20 (1991)CrossRefGoogle Scholar
  39. 39.
    Stauning, O.: Automatic validation of numerical solutions. Ph.D. thesis, Technical University of Denmark, DK-2800, Lyngby, Denmark (1997)Google Scholar
  40. 40.
    Stauning, O., Bendtsen, C.: FADBAD++ web page (2003). http://www.imm.dtu.dk/fadbad.html Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations