Advertisement

Verification of Graph Transformation Systems with Context-Free Specifications

  • Barbara König
  • Javier Esparza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)

Abstract

We introduce an analysis method for graph transformation systems which checks that certain forbidden graphs are not reachable from the start graph. These forbidden graphs are specified by a context-free graph grammar. The technique is based on the approximation of graph transformation systems by Petri nets and on semilinear sets of markings. Especially we exploit Parikh’s theorem which says that the Parikh image of a context-free grammar is semilinear. An important application is deadlock analysis for interaction nets and we specifically show how to apply the technique to an infinite-state dining philosopher’s system.

Keywords

Graph Transformation Reachable Graph Graph Transformation System Dine Philosopher Node Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Baldan, P., König, B.: Approximating the behaviour of graph transformation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 14–29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., König, B., König, B.: A logic for analyzing abstractions of graph transformation systems. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 255–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner abstraction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 249–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent programs with procedures. In: Proc. of POPL 2003, pp. 62–73. ACM, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Programming Languages and Systems 6(4), 632–646 (1984)CrossRefGoogle Scholar
  7. 7.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, ch. 5. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  8. 8.
    Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting. In: Proc. of PLDI 1994. SIGPLAN Notices, vol. 29(6), pp. 230–241. ACM, New York (1994)CrossRefGoogle Scholar
  9. 9.
    Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Dotti, F.L., Foss, L., Ribeiro, L., Marchi Santos, O.: Verification of distributed object-based systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 261–275. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Esparza, J., Melzer, S.: Verification of safety properties using integer programming: Beyond the state equation. Formal Methods in System Design 16, 159–189 (2000)CrossRefGoogle Scholar
  12. 12.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Habel, A.: Hyperedge Replacement: Grammars and Languages. In: Habel, A. (ed.) Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    König, B.: Graph transformation systems, Petri nets and semilinear sets: Checking for the absence of forbidden paths in graphs. In: Proc. of PNGT 2006. Electronic Communications of the EASST, vol. 2 (2007)Google Scholar
  15. 15.
    König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    König, B., Kozioura, V.: Augur 2—a new version of a tool for the analysis of graph transformation systems. In: Proc. of GT-VMT 2006. ENTCS, vol. 211, pp. 201–210. Elsevier, Amsterdam (2006)Google Scholar
  17. 17.
    Lafont, Y.: Interaction nets. In: Proc. of POPL 1990, pp. 95–108. ACM Press, New York (1990)CrossRefGoogle Scholar
  18. 18.
    Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Meyer, R.: On boundedness in depth in the pi-calculus. In: Proc. of IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Rensink, A., Distefano, D.: Abstract graph transformation. In: Proc. of SVV 2005. ENTCS, vol. 157.1, pp. 39–59 (2005)Google Scholar
  22. 22.
    Rieger, S., Noll, T.: Abstracting complex data structures by hyperedge replacement. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 69–83. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. TOPLAS (ACM Transactions on Programming Languages and Systems) 24(3), 217–298 (2002)CrossRefGoogle Scholar
  24. 24.
    Varró, D.: Towards symbolic analysis of visual modeling languages. In: Proc. of GT-VMT 2002. ENTCS, vol. 72. Elsevier, Amsterdam (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Barbara König
    • 1
  • Javier Esparza
    • 2
  1. 1.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany
  2. 2.Fakultät für InformatikTechnische Universität MünchenGermany

Personalised recommendations