Graph Rewriting in Span-Categories
Abstract
There are three variations of algebraic graph rewriting, the double-pushout, the single-pushout, and the sesqui-pushout approach. In this paper, we show that all three approaches can be considered special cases of a general rewriting framework in suitable categories of spans over a graph-like base category. From this new view point, it is possible to provide a general and unifying theory for all approaches. We demonstrate this fact by the investigation of general parallel independence. Besides this, the new and more general framework offers completely new ways of rewriting: Using spans as matches, for example, provides a simple mechanism for universal quantification. The general theory, however, applies to these new types of rewriting as well.
Keywords
Algebraic Approach Graph Transformation Graph Grammar Unique Morphism Graph Transformation SystemPreview
Unable to display preview. Download preview PDF.
References
- 1.Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Applied Categorical Structures 9(1), 65–82 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): Proceedings of Graph Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil. LNCS, vol. 4178. Springer, Heidelberg (2006)Google Scholar
- 3.Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, et al. (eds.) [2], pp. 30–45Google Scholar
- 4.Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part i: Basic concepts and double pushout approach. In: Rozenberg (ed.) [17], pp. 163–246Google Scholar
- 5.Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star grammars. In: Corradini, et al. (eds.) [2], pp. 77–91Google Scholar
- 6.Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
- 7.Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation - part ii: Single pushout approach and comparison with double pushout approach. In: Rozenberg (ed.) [17], pp. 247–312Google Scholar
- 8.Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: FOCS, pp. 167–180. IEEE, Los Alamitos (1973)Google Scholar
- 9.Goldblatt, R.: Topoi. Dover Publications, Mineola (1984)zbMATHGoogle Scholar
- 10.Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
- 11.Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and coalgebraic loose semantics for graph transformation systems. Applied Categorical Structures 9(1), 83–110 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Kahl, W.: A relation-algebraic approach to graph structure transformation. Habil. Thesis 2002-03, Fakultät für Informatik, Univ. der Bundeswehr München (2001)Google Scholar
- 13.Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 490–504. Springer, Heidelberg (1990)CrossRefGoogle Scholar
- 14.Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1&2), 181–224 (1993)zbMATHCrossRefGoogle Scholar
- 15.McLarty, C.: Elementary Categories, Elementary Toposes. Oxford Science Publications/Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
- 16.Monserrat, M., Rossello, F., Torrens, J., Valiente, G.: Single pushout rewriting in categories of spans i: The general setting. Technical Report LSI-97-23-R, Department de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (1997)Google Scholar
- 17.Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
- 18.Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar