Advertisement

Graph Rewriting in Span-Categories

  • Michael Löwe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)

Abstract

There are three variations of algebraic graph rewriting, the double-pushout, the single-pushout, and the sesqui-pushout approach. In this paper, we show that all three approaches can be considered special cases of a general rewriting framework in suitable categories of spans over a graph-like base category. From this new view point, it is possible to provide a general and unifying theory for all approaches. We demonstrate this fact by the investigation of general parallel independence. Besides this, the new and more general framework offers completely new ways of rewriting: Using spans as matches, for example, provides a simple mechanism for universal quantification. The general theory, however, applies to these new types of rewriting as well.

Keywords

Algebraic Approach Graph Transformation Graph Grammar Unique Morphism Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Applied Categorical Structures 9(1), 65–82 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): Proceedings of Graph Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil. LNCS, vol. 4178. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, et al. (eds.) [2], pp. 30–45Google Scholar
  4. 4.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part i: Basic concepts and double pushout approach. In: Rozenberg (ed.) [17], pp. 163–246Google Scholar
  5. 5.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star grammars. In: Corradini, et al. (eds.) [2], pp. 77–91Google Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  7. 7.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation - part ii: Single pushout approach and comparison with double pushout approach. In: Rozenberg (ed.) [17], pp. 247–312Google Scholar
  8. 8.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: FOCS, pp. 167–180. IEEE, Los Alamitos (1973)Google Scholar
  9. 9.
    Goldblatt, R.: Topoi. Dover Publications, Mineola (1984)zbMATHGoogle Scholar
  10. 10.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and coalgebraic loose semantics for graph transformation systems. Applied Categorical Structures 9(1), 83–110 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kahl, W.: A relation-algebraic approach to graph structure transformation. Habil. Thesis 2002-03, Fakultät für Informatik, Univ. der Bundeswehr München (2001)Google Scholar
  13. 13.
    Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 490–504. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1&2), 181–224 (1993)zbMATHCrossRefGoogle Scholar
  15. 15.
    McLarty, C.: Elementary Categories, Elementary Toposes. Oxford Science Publications/Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  16. 16.
    Monserrat, M., Rossello, F., Torrens, J., Valiente, G.: Single pushout rewriting in categories of spans i: The general setting. Technical Report LSI-97-23-R, Department de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (1997)Google Scholar
  17. 17.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  18. 18.
    Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Löwe
    • 1
  1. 1.Fachhochschule für die Wirtschaft Hannover 

Personalised recommendations