Skip to main content

New Optimal Variable-Weight Optical Orthogonal Codes

  • Conference paper
Sequences and Their Applications – SETA 2010 (SETA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6338))

Included in the following conference series:

Abstract

Let \(W, \ L\), and Q denote the sets {w 0, w 1, ..., w p }, \(\{\lambda_a^0, \) \(\lambda_a^1, \ldots, \lambda_a^p\}\) and {q 0, q 1, ..., q p }, respectively. An (n, W, L, λ c , Q) variable-weight optical orthogonal code C, or (n, W, L, λ c , Q)-OOC, is a collection of binary n-tuples such that for each 0 ≤ i ≤ p, there are exactly q i |C| codewords of weight w i , L is related to periodic auto-correlation, and λ c is related to periodic cross-correlation. The notation (n, W, λ, Q)- OOC is used to denote an (n, W, L, λ c , Q)-OOC with the property that \(\lambda_a^0=\lambda_a^1=\ldots=\lambda_a^p=\lambda_c=\lambda\). An (n, W, L, λ c , Q)-OOCs was introduced by Yang for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. A cyclic (v,K, 1) difference family (cyclic (v,K, λ)-DF in short) is a family \(\cal F=\{B_1, B_2, \ldots, B_t\}\) of t subsets of Z v , the residue ring of integers modulo v, K = {|B i |: 1 ≤ i ≤ t}, such that the differences in \(\cal F\), \(\Delta \cal F=\bigcup_{B\in \cal F}\Delta B\) cover each nonzero element of Z v exactly λ times, where for each \(B\in \cal F\), \(\Delta B=\{x-y: x, y\in B, x\ne y\}\), and \(|dev \ B_i|=v\), 1 ≤ i ≤ t, \(dev \ B_i=\{B_i+g: g\in Z_v\}\). A cyclic (v,W, 1,Q)-DF is defined to be a cyclic (v,W, 1)-DF with the property that the fraction of number of blocks of size w i is q i , 0 ≤ i ≤ p. In this paper, constructions for cyclic (v, {4, 6, 7},1,{1/3, 1/3, 1/3})-DFs for primes \(v\equiv 1\pmod {84}\), (v, {4, u},1,{1/2, 1/2})-DFs for primes \(v\equiv 1\pmod {u(u-1)+12}\), \(u\equiv 0, 1\pmod 3>4\) are presented. New optimal (v, W, 1,Q)-OOCs for 2 ≤ |W| ≤ 4 are then obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salehi, J.A.: Code division multiple access techniques in optical fiber networks-Part I Fundamental Principles. IEEE Trans. Commun. 37, 824–833 (1989)

    Article  Google Scholar 

  2. Salehi, J.A., Brackett, C.A.: Code division multiple access techniques in optical fiber networks-Part II Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)

    Article  Google Scholar 

  3. Chung, F.R.K., Salehi, J.A., Wei, V.K.: Optical orthogonal codes: Design, analysis and applications. IEEE Trans. Inform. Theory 35, 595–604 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Golomb, S.W.: Digital communication with space application. Penisula, Los Altos (1982)

    Google Scholar 

  5. Massey, J.L., Mathys, P.: The collision channel without feedback. IEEE Trans. Inform. Theory 31, 192–204 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Salehi, J.A.: Emerging optical code-division multiple-access communications systems. IEEE Network 3, 31–39 (1989)

    Article  Google Scholar 

  7. Vecchi, M.P., Salehi, J.A.: Neuromorphic networks based on sparse optical orthogonal codes. In: Neural Information Processing Systems-Natural and Synthetic, pp. 814–823. Amer. Inst. Phys, New York (1988)

    Google Scholar 

  8. Abel, R., Buratti, M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory 106, 59–75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bitan, S., Etzion, T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inform. Theory 41, 77–87 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buratti, M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, Y., Fuji-Hara, R., Miao, Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inform. Theory 49, 1283–1292 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang, Y., Ji, L.: Optimal (4up, 5, 1) optical orthogonal codes. J. Combin. Des. 12, 346–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chang, Y., Miao, Y.: Constructions for optimal optical orthogonal codes. Discrete Math. 261, 127–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, K., Ge, G., Zhu, L.: Starters and related codes. J. Statist. Plann. Inference 86, 379–395 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chu, W., Colbourn, C.J.: Recursive constructions for optimal (n, 4, 2)-OOCs. J. Combin. Des. 12, 333–345 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chu, W., Golomb, S.W.: A new recursive construction for optical orthogonal codes. IEEE Trans. Inform. Theory 49, 3072–3076 (2003)

    Article  MathSciNet  Google Scholar 

  17. Chung, H., Kumar, P.V.: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. Inform. Theory 36, 866–873 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fuji-Hara, R., Miao, Y.: Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans. Inform. Theory 46, 2396–2406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fuji-Hara, R., Miao, Y., Yin, J.: Optimal (9v, 4, 1) optical orthogonal codes. SIAM J. Discrete Math. 14, 256–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ge, G., Yin, J.: Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans. Inform. Theory 47, 2998–3004 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma, S., Chang, Y.: A new class of optimal optical orthogonal codes with weight five. IEEE Trans. Inform. Theory 50, 1848–1850 (2004)

    Article  MathSciNet  Google Scholar 

  22. Ma, S., Chang, Y.: Constructions of optimal optical orthogonal codes with weight five. J. Combin. Des. 13, 54–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yin, J.: Some combinatorial constructions for optical orthogonal codes. Discrete Math. 185, 201–219 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gu, F.R., Wu, J.: Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J. Lightw. Technol. 23, 740–748 (2005)

    Article  Google Scholar 

  25. Yang, G.C.: Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. Commun. 44, 47–55 (1996)

    Article  MATH  Google Scholar 

  26. Yang, G.C.: Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. In: GLOBECOM 1993, vol. 1, pp. 488–492. IEEE, Los Alamitos (1993)

    Google Scholar 

  27. Wu, D., Fan, P., Li, H., Parampalli, U.: Optimal variable-weight optical orthogonal codes via cyclic difference families. In: 2009 IEEE International Symposium on Information Theory, ISIT 2009, June 28-July 3, pp. 448–452. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  28. Buratti, M.: Pairwise balanced designs from finite fields. Discrete Math. 208/209, 103–117 (1999)

    Article  MathSciNet  Google Scholar 

  29. Wu, D., Chen, Z., Cheng, M.: A note on the existence of balanced (q, {3,4}, 1) difference families. The Australasian J. Combin. 41, 171–174 (2008)

    MATH  MathSciNet  Google Scholar 

  30. Wu, D., Cheng, M., Chen, Z., Luo, H.: The existence of balanced (v, {3,6}, 1) difference families. Science in China (Ser. F) (to appear)

    Google Scholar 

  31. Abel, R., Buratti, M.: Differnce families. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 392–410. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, D., Cao, J., Fan, P. (2010). New Optimal Variable-Weight Optical Orthogonal Codes. In: Carlet, C., Pott, A. (eds) Sequences and Their Applications – SETA 2010. SETA 2010. Lecture Notes in Computer Science, vol 6338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15874-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15874-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15873-5

  • Online ISBN: 978-3-642-15874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics