Advertisement

Optimal Authentication Codes from Difference Balanced Functions

  • Yang Yang
  • Xiaohu Tang
  • Udaya Parampalli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this paper, we present two classes of optimal authentication codes without secrecy from difference balanced functions. The new codes are as good as or have more flexible parameters than the optimal codes from perfect nonlinear functions.

Keywords

Difference balanced functions perfect nonlinear functions authentication code impersonation attack substitution attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bini, G.: A-codes from rational functions over galois rings. Designs, Codes and Cryptography 39, 207–214 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carlet, C., Ding, C.: Authentication schemes from highly nonlinear functions. In: ISIT 2006, Seattle, USA (July 2006)Google Scholar
  3. 3.
    Chanson, S., Ding, C., Salomaa, A.: Cartesian authentication codes from functions with optimal nonlinearity. Theoretical Computer Science 290, 24–33 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ding, C., Helleseth, T., Klφve, T., Wang, X.: A generic construction of cartesian authentication code. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ding, C., Niederreiter, N.: Systematic authentication code from highly nonlinear functions. IEEE Trans. Inform. Theory 50(10), 2421–2428 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theoretical Computer Science 330, 81–99 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Golomb, S.W., Gong, G.: Signal design for good correlation for wireless communication, cryptography and radar. Cambridge Press, Cambridge (2005)Google Scholar
  8. 8.
    Helleseth, T., Gong, G.: New binary sequences with ideal-level autocorrelation function. IEEE Trans. Inform. Theory 154(18), 2868–2872 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Helleseth, T., Johansson, T.: Universal hash functions from exponential sums over finite fields and galois rings. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 31–44. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Kabatianskii, G.A., Sweets, B., Joansson, T.: On the relationship between A-codes and codes correcting independent errors. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 1–11. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Kabatianskii, G.A., Sweets, B., Joansson, T.: On the cardinality of systematic authentication codes via error-correcting codes. IEEE Trans. Inform. Theory 42(2), 566–578 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jang, J.-W., Kim, Y.-S., No, J.-S., Helleseth, T.: New family of p-ary sequences with optimal correlation property and large linear span. IEEE Trans. Inform. Theory 50(8), 1839–1844 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Klapper, A.: d-from sequence: Families of sequences with low correlaltion values and large linear spans. IEEE Trans. Inform. Theory 51(4), 1469–1477 (1995)Google Scholar
  14. 14.
    No, J.-S.: New cyclic difference sets with Singer parameters constructed from d-homogeneous function. Designs, Codes and Cryptography 33, 199–213 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC, Boca Raton (1995)zbMATHGoogle Scholar
  16. 16.
    Simmons, G.J.: Authentication theory/coding theory. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. 17.
    Tang, X.H.: A note on d-form function with differencebalanced property (Preprint)Google Scholar
  18. 18.
    Wang, H., Xing, C., Safavi-Naini, R.: Linear authentication codes: Bounds and constructions. IEEE Trans. Inform. Theory 49(4), 866–872 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yang Yang
    • 1
  • Xiaohu Tang
    • 1
  • Udaya Parampalli
    • 2
  1. 1.Institute of Mobile CommunicationsSouthwest Jiaotong UniversityPRC, China
  2. 2.Department of Computer Science and Software EngineeringUniversity of MelbourneAustralia

Personalised recommendations