Advertisement

Fourier Duals of Björck Sequences

  • Branislav M. Popović
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

Closed-form expressions for the Fourier duals of Björck sequences are derived. Based on these expressions, the definition of Björck sequences of prime lengths \(N\equiv3\pmod{4}\) is extended to include additional, previously unknown Constant Amplitude Zero Autocorrelation (CAZAC) sequences.

Keywords

Sequences DFT Fourier dual CAZAC Björck 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sesia, S., Toufik, I., Baker, M. (eds.): LTE - The UMTS Long Term Evolution: from Theory to Practice. John Wiley & Sons Ltd., Chichester (2009)Google Scholar
  2. 2.
    Popovic, B.M.: Efficient DFT of Zadoff-Chu sequences. Electronics Letters 46(7) (April 1, 2010)Google Scholar
  3. 3.
    Benedetto, J.J., Konstantinidis, I., Rangaswamy, M.: Phase-Coded Waveforms and Their Design. IEEE Signal Processing Magazine 22 (January 2009)Google Scholar
  4. 4.
    Björck, G.: Functions of modulus 1 on Zn whose Fourier transforms have constant modulus, and “cyclic n-roots”. In: Byrnes, J.S., Byrnes, J.F. (eds.) Recent Advances in Fourier Analysis and Its Applications. NATO-ASI Series C, vol. 315, pp. 131–140. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  5. 5.
    Bömer, L., Antweiler, M.: Binary and Biphase Sequences and Arrays with Low Periodic Autocorrelation Sidelobes. In: IEEE ICASSP Conference, Albuquerque, pp. 1663–1666 (1990)Google Scholar
  6. 6.
    Golomb, S.W.: Two-Valued Sequences with Perfect Periodic Autocorrelation. IEEE Trans. on Aerospace and Electronic Systems 28(2), 383–386 (1992)CrossRefGoogle Scholar
  7. 7.
    Gottesman, S.R., Grieve, P.G., Golomb, S.W.: A Class of Pseudonoise-Like Pulse Compression Codes. IEEE Trans. on Aerospace and Electronic Systems 28(2), 355–362 (1992)CrossRefGoogle Scholar
  8. 8.
    Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi sums. John Wiley & Sons Inc., New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Branislav M. Popović
    • 1
  1. 1.Huawei Technologies Sweden ABKistaSweden

Personalised recommendations