Advertisement

Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space

  • Hisao Ishibuchi
  • Yasuhiro Hitotsuyanagi
  • Noritaka Tsukamoto
  • Yusuke Nojima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6239)

Abstract

Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the case of two and three objectives. One difficulty in the design of many-objective EMO algorithms is that we cannot visually observe the behavior of multiobjective evolution in the objective space with four or more objectives. In this paper, we propose the use of many-objective test problems in a two- or three-dimensional decision space to visually examine the behavior of multiobjective evolution. Such a visual examination helps us to understand the characteristic features of EMO algorithms for many-objective optimization. Good understanding of existing EMO algorithms may facilitates their modification and the development of new EMO algorithms for many-objective optimization.

Keywords

Evolutionary multiobjective optimization (EMO) many-objective optimization multiobjective optimization problems test problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbass, H.A., Alam, S., Bender, A.: MEBRA: Multiobjective Evolutionary-Based Risk Assessment. IEEE Computational Intelligence Magazine 4, 29–36 (2009)CrossRefGoogle Scholar
  2. 2.
    Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point. In: Foundations of Genetic Algorithms: FOGA 2009, pp. 87–102 (2009)Google Scholar
  3. 3.
    Coello, C.A.C., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  4. 4.
    Corne, D., Knowles, J.: Techniques for Highly Multiobjective Optimization: Some Non-Dominated Points are Better Than Others. In: Proc. of 2007 Genetic and Evolutionary Computation Conference, pp. 773–780 (2007)Google Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proc. of 2002 IEEE Congress on Evolutionary Computation, pp. 825–830 (2002)Google Scholar
  8. 8.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L.C., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Hughes, E.J.: Evolutionary Many-Objective Optimization: Many Once or One Many? In: Proc. of 2005 IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)Google Scholar
  11. 11.
    Hughes, E.J.: MSOPS-II: A General-Purpose Many-Objective Optimizer. In: Proc. of 2007 IEEE Congress on Evolutionary Computation, pp. 3944–3951 (2007)Google Scholar
  12. 12.
    Ishibuchi, H., Hitotsuyanagi, Y., Nojima, Y.: Scalability of Multiobjective Genetic Local Search to Many-Objective Problems: Knapsack Problem Case Studies. In: Proc. of 2008 IEEE Congress on Evolutionary Computation, pp. 3587–3594 (2008)Google Scholar
  13. 13.
    Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between Single-Objective and Multi-Objective Genetic Algorithms: Performance Comparison and Performance Measures. In: Proc. of 2006 IEEE Congress on Evolutionary Computation, pp. 3959–3966 (2006)Google Scholar
  14. 14.
    Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Single-Objective and Multi-Objective Formulations of Solution Selection for Hypervolume Maximization. In: Proc. of 2009 Genetic and Evolutionary Computation Conference, pp. 1831–1832 (2009)Google Scholar
  15. 15.
    Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of Scalability Improvement Attempts on the Performance of NSGA-II for Many-Objective Problems. In: Proc. of 2008 Genetic and Evolutionary Computation Conference, pp. 649–656 (2008)Google Scholar
  16. 16.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)Google Scholar
  17. 17.
    Jeong, S., Hasegawa, S., Shimoyama, K., Obayashi, S.: Development and Investigation of Efficient GA/PSO-HYBRID Algorithm Applicable to Real-World Design Optimization. IEEE Computational Intelligence Magazine 4, 36–44 (2009)CrossRefGoogle Scholar
  18. 18.
    Jin, Y., Sendhoff, B.: A Systems Approach to Evolutionary Multiobjective Structural Optimization and Beyond. IEEE Computational Intelligence Magazine 4, 62–76 (2009)CrossRefGoogle Scholar
  19. 19.
    Khara, V., Yao, X., Deb, K.: Performance Scaling of Multi-Objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Knowles, J.: Closed-loop Evolutionary Multiobjective Optimization. IEEE Computational Intelligence Magazine 4, 77–91 (2009)CrossRefGoogle Scholar
  21. 21.
    Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Sato, H., Aguirre, H.E., Tanaka, K.: Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Singh, H., Isaacs, A., Ray, T., Smith, W.: A Study on the Performance of Substitute Distance Based Approaches for Evolutionary Many Objective Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 411–420. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Sülflow, A., Drechsler, N., Drechsler, R.: Robust Multi-Objective Optimization in High Dimensional Spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715–726. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  27. 27.
    Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)CrossRefGoogle Scholar
  29. 29.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 125–148 (2000)CrossRefGoogle Scholar
  30. 30.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001)Google Scholar
  31. 31.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)CrossRefGoogle Scholar
  32. 32.
    Zou, X., Chen, Y., Liu, M., Kang, L.: A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics 38, 1402–1412 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hisao Ishibuchi
    • 1
  • Yasuhiro Hitotsuyanagi
    • 1
  • Noritaka Tsukamoto
    • 1
  • Yusuke Nojima
    • 1
  1. 1.Department of Computer Science and Intelligent Systems, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations