A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition

  • Noura Al Moubayed
  • Andrei Petrovski
  • John McCall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6239)


A novel Smart Multi-Objective Particle Swarm Optimisation method - SDMOPSO - is presented in the paper. The method uses the decomposition approach proposed in MOEA/D, whereby a multi-objective problem (MOP) is represented as several scalar aggregation problems. The scalar aggregation problems are viewed as particles in a swarm; each particle assigns weights to every optimisation objective. The problem is solved then as a Multi-Objective Particle Swarm Optimisation (MOPSO), in which every particle uses information from a set of defined neighbours. The paper also introduces a novel smart approach for sharing information between particles, whereby each particle calculates a new position in advance using its neighbourhood information and shares this new information with the swarm. The results of applying SDMOPSO on five standard MOPs show that SDMOPSO is highly competitive comparing with two state-of-the-art algorithms.


Particle Swarm Optimisation Particle Swarm Pareto Front Multiobjective Optimization Pareto Optimal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Q., Li, H.: Moea/d: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712–731 (2007)CrossRefGoogle Scholar
  2. 2.
    Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: CEC 2009: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, Norway, pp. 203–208. IEEE, Los Alamitos (2009)Google Scholar
  3. 3.
    Awwad Shiekh Hasan, B., Gan, J.Q., Zhang, Q.: Multi-objective evolutionary methods for channel selection in brain-computer interfaces: some preliminary experimental results. In: WCCI, Barcelona, Spain, pp. 3339–3344. IEEE, Los Alamitos (2010)Google Scholar
  4. 4.
    Wang, Z., Durst, G.L., Eberhart, R.C., Boyd, D.B., Ben Miled, Z.: Particle swarm optimization and neural network application for qsar. In: Parallel and Distributed Processing Symposium, International, vol. 10, p. 194 (2004)Google Scholar
  5. 5.
    Jaishia, B., Ren, W.: Finite element model updating based on eigenvalue and strain. Mechanical Systems and Signal Processing 21(5), 2295–2317 (2007)CrossRefGoogle Scholar
  6. 6.
    Sudha, B., Petrovski, A., McCall, J.: Optimising Cancer Chemotherapy Using Particle Swarm Optimisation and Genetic Algorithms. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 633–641. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  8. 8.
    Baltar, A.M., Fontane, D.G.: A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality. In: The Twenty Sixth Annual American Geophysical Union Hydrology Days (2006)Google Scholar
  9. 9.
    Hassan, R., Cohanim, B., de Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: Structural Dynamics and Materials, Texas, USA (2005)Google Scholar
  10. 10.
    Peng, W., Zhang, Q.: A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems. In: IEEE International Conference on Granular Computing, Hangzhou (2008)Google Scholar
  11. 11.
    Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  13. 13.
    Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment. IEEE Trans. on Evolutionary Computation 6(4), 402–412 (2002)CrossRefGoogle Scholar
  14. 14.
    Reyes-Sierra, M., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Norwell (2002)zbMATHGoogle Scholar
  16. 16.
    Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos (2006)Google Scholar
  17. 17.
    El-Ghazali, T.: Metaheuristics: from design to implementation. John Wiley & Sons, Chichester (2009)zbMATHGoogle Scholar
  18. 18.
    Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: IEEE International Conference on E-Commerce Technology, vol. 1, pp. 711–716 (2002)Google Scholar
  19. 19.
    Desmar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)Google Scholar
  20. 20.
    Fleischer, M.: The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Noura Al Moubayed
    • 1
  • Andrei Petrovski
    • 1
  • John McCall
    • 1
  1. 1.Robert Gordon University, AberdeenAberdeenUK

Personalised recommendations