Skip to main content

Optical Spectroscopy of Wide-Gap Diluted Magnetic Semiconductors

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 144))

Abstract

We focus here on striking differences between the physics of diluted magnetic semiconductors described in the preceding Chapter and those whose constituent semiconductor matrix is a wide gap material, as exemplified primarily by ZnO and GaN. We demonstrate the importance of two effects, usually negligible in moderate and narrow gap semiconductors: electron–hole exchange in excitons and small spin–orbit splitting of the valence band, both producing deviations from proportionality of giant Zeeman splitting to magnetization. We also show that the sp − d exchange constants, expected to be large, do not result in very large exciton spin splitting. Therefore, a notion of apparent exchange constants is introduced and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

  2. J.I. Hwang et al., Phys. Rev. B 72, 085216 (2005)

    Article  ADS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  4. S.I. Gubarev, Zh. Eksp. Teor. Fiz 80, 1174 (1983)

    Google Scholar 

  5. M. Nawrocki, J.P. Lascaray, D. Coquillat, M. Demianiuk, in Diluted Magnetic (Semimagnetic) Semiconductors, eds. by S. von Molnar, R. Aggarwal, J.K. Furdyna, Math. Res. Soc. Symp. Proc. 89, 65 (1987)

    Google Scholar 

  6. C. Benoit à la Guillaume, D. Scalbert, T. Dietl, Phys. Rev. B 46, 9853 (1992)

    Google Scholar 

  7. R. Pappalardo, D.L. Wood, R.C. Linares Jr, J. Chem. Phys. 35, 2041 (1961)

    Article  ADS  Google Scholar 

  8. R.S. Anderson, Phys. Rev. 164, 398 (1967)

    Article  ADS  Google Scholar 

  9. P. Koidl, Phys. Rev. B 15, 2493 (1977)

    Article  ADS  Google Scholar 

  10. H.-J. Schulz, M. Thiede, Phys. Rev. B 35, 18 (1987)

    Article  ADS  Google Scholar 

  11. R. Heitz, A. Hoffmann, I. Broser, Phys. Rev. B 45, 8977 (1992)

    Article  ADS  Google Scholar 

  12. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2, 39, L555 (2000)

    Google Scholar 

  13. J. Blinowski, P. Kacman, T. Dietl, Math. Res. Soc. Symp. Proc. 690; arXiv: cond-mat/0201012 (2002)

    Google Scholar 

  14. N.A. Spaldin, Phys. Rev. B 69, 125201 (2004)

    Article  ADS  Google Scholar 

  15. H. Hori et al., Phys. B: Condens. Matter 324, 142 (2002)

    Article  ADS  Google Scholar 

  16. V.A. Chitta et al., Appl. Phys. Lett. 85, 3777 (2004)

    Article  ADS  Google Scholar 

  17. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    Article  ADS  Google Scholar 

  18. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  19. S.-W. Lim, D.-K. Hwang, J.-M. Myoung, Solid State Commun. 125, 231 (2003)

    Article  ADS  Google Scholar 

  20. K. Rode et al., J. Appl. Phys. 93, 7676 (2003)

    Article  ADS  Google Scholar 

  21. S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. 84, 5255 (2004)

    Article  ADS  Google Scholar 

  22. A.C. Tuan et al., Phys. Rev. B 70, 054424 (2004)

    Article  ADS  Google Scholar 

  23. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  ADS  Google Scholar 

  24. K. Ando, H. Saito, V. Zayets, M.C. Debnath, J. Phys. Condens. Matter 16, S5541 (2004)

    Article  ADS  Google Scholar 

  25. W. Pacuski et al., Phys. Rev. B 73, 035214 (2006)

    Article  ADS  Google Scholar 

  26. J. Lagois, Phys. Rev. B 16, 1699 (1977)

    Article  ADS  Google Scholar 

  27. J. Lagois, Phys. Rev. B 23, 5511 (1981)

    Article  ADS  Google Scholar 

  28. D.W. Langer, R.N. Euwema, K. Era, T. Koda, Phys. Rev. B 2, 4005 (1970)

    Article  ADS  Google Scholar 

  29. D.C. Reynolds et al., Phys. Rev. B 60, 2340 (1999)

    Article  ADS  Google Scholar 

  30. B. Gil et al., Jpn. J. Appl. Phys. 40, L 1089 (2001)

    Google Scholar 

  31. B. Gil, Phys. Rev. B 64, 201310 (2001)

    Article  ADS  Google Scholar 

  32. W.R.L. Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, B.K. Meyer, Phys. Rev. B 65, 075207 (2002)

    Article  ADS  Google Scholar 

  33. T. Gruber et al., J. Appl. Phys. 96, 289 (2004)

    Article  ADS  Google Scholar 

  34. D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)

    Article  ADS  Google Scholar 

  35. R. Stępniewski et al., Phys. Rev. B 60, 4438 (1999)

    Article  ADS  Google Scholar 

  36. W. Pacuski et al., Phys. Rev. Lett. 100, 037204 (2008)

    Article  ADS  Google Scholar 

  37. W. Pacuski et al., Phys. Rev. B 76, 165304 (2007)

    Article  ADS  Google Scholar 

  38. M. Dobrowolska, D. Dobrowolski, R.R. Galazka, A. Mycielski, Phys. Stat. Sol. B 105, 477 (1981)

    Article  ADS  Google Scholar 

  39. E. Przeździecka et al., Solid State Commun. 139, 541 (2006)

    Article  ADS  Google Scholar 

  40. J.F. Muth et al., Appl. Phys. Lett. 71, 2572 (1997)

    Article  ADS  Google Scholar 

  41. E. Chikoidze, Y. Dumont, H. von Bardeleben, W. Pacuski, O. Gorochova, Superlattice. Microstruct. 42, 176 (2007)

    Article  ADS  Google Scholar 

  42. D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003)

    Article  Google Scholar 

  43. K. Ando, 7th Symposium PASPS 2001, condmat/0208010 (2002)

    Google Scholar 

  44. K.R. Kittilstved et al., Appl. Phys. Lett. 89, 062510 (2006)

    Article  ADS  Google Scholar 

  45. W. Pacuski, Ph. D. thesis, University of Warsaw and Université Joseph Fourier, Grenoble, http://tel.archives-ouvertes.fr, 2008

  46. J. Gaj, R. Planel, G. Fishman, Solid State Commun. 29, 435 (1979)

    Article  ADS  Google Scholar 

  47. A. Twardowski, P. Swiderski, M. von Ortenberg, R. Pauthenet, Solid State Commun. 50, 509 (1984)

    Article  ADS  Google Scholar 

  48. A. Twardowski, P. Swiderski, M. von Ortenberg, R. Pauthenet, Solid State Commun. 51, 849 (1984)

    Article  ADS  Google Scholar 

  49. B.E. Larson, K.C. Hass, H. Ehrenreich, A.E. Carlsson, Phys. Rev. B 37, 4137 (1988)

    Article  ADS  Google Scholar 

  50. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  51. J.R. Schrieffer, J. Appl. Phys. 38, 1143 (1967)

    Article  ADS  Google Scholar 

  52. J. Blinowski, P. Kacman, Acta Phys. Pol. A 100, 343 (2001)

    ADS  Google Scholar 

  53. J. Okabayashi et al., Phys. Rev. B 58, R4211 (1998)

    Article  ADS  Google Scholar 

  54. J. Okabayashi et al., Phys. Rev. B 59, R2486 (1999)

    Article  ADS  Google Scholar 

  55. T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, M. Kawasaki, Phys. Rev. B 65, 085209 (2002)

    Article  ADS  Google Scholar 

  56. J. Okabayashi et al., Phys. Rev. B 65, 161203 (2002)

    Article  ADS  Google Scholar 

  57. J. Okabayashi et al., J. Appl. Phys. 95, 3573 (2004)

    Article  ADS  Google Scholar 

  58. T. Dietl, Exchange Interactions and Nanoscale Phase Separations in Magnetically Doped Semiconductors, in Spintronics, eds. by T. Dietl, D.D. Awschalom, M. Kaminska, H. Ohno. Semiconductors and Semimetals, vol 82 (Elsevier, San Diego, 2008)

    Google Scholar 

  59. T. Chanier, F. Virot, R. Hayn, Phys. Rev. B 79, 205204 (2009)

    Article  ADS  Google Scholar 

  60. R. Bouzerar, G. Bouzerar, T. Ziman, Europhys. Lett. (EPL) 78, 67003 (5pp) (2007)

    Google Scholar 

  61. T. Dietl, Phys. Rev. B 77, 085208 (2008)

    Article  ADS  Google Scholar 

  62. W. Pacuski et al., Phys. Rev. Lett. 100, 037204 (2008)

    Article  ADS  Google Scholar 

  63. C. Śliwa, T. Dietl, Phys. Rev. B 78, 165205 (2008)

    Article  ADS  Google Scholar 

  64. R.C. Myers, M. Poggio, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 95, 017204 (2005)

    Article  ADS  Google Scholar 

  65. M. Julier, J. Campo, B. Gil, J.P. Lascaray, S. Nakamura, Phys. Rev. B 57, R6791 (1998)

    Article  ADS  Google Scholar 

  66. B. Gil, A. Alemu, Phys. Rev. B 56, 12446 (1997)

    Article  ADS  Google Scholar 

  67. M. Arciszewska, M. Nawrocki, J. Phys. Chem. Solids 47, 309 (1986)

    Article  ADS  Google Scholar 

  68. F. Hamdani et al., Phys. Rev. B 45, 13298 (1992)

    Article  ADS  Google Scholar 

  69. J.L. Birman, Phys. Rev. Lett. 2, 157 (1959)

    Article  ADS  Google Scholar 

  70. M. Herbich et al., Phys. Rev. B 58, 1912 (1998)

    Article  ADS  Google Scholar 

  71. Y.G. Semenov, V.G. Abramishvili, A.V. Komarov, S.M. Ryabchenko, Phys. Rev. B 56, 1868 (1997)

    Article  ADS  Google Scholar 

  72. B. Gil, O. Briot, R.-L. Aulombard, Phys. Rev. B 52, R17028 (1995)

    Article  ADS  Google Scholar 

  73. B. Gil, J. Appl. Phys. 98, 086114 (2005)

    Article  ADS  Google Scholar 

  74. T. Dietl, Phys. Rev. B 77, 085208 (2008)

    Article  ADS  Google Scholar 

  75. R.L. Aggarwal et al., Phys. Rev. B 28, 6907 (1983)

    Article  ADS  Google Scholar 

  76. M. Nawrocki, F. Hamdani, J.P. Lascaray, Z. Golacki, J. Deportes, Solid State Commun. 77, 111 (1991)

    Article  ADS  Google Scholar 

  77. A. Twardowski, K. Pakula, I. Perez, P. Wise, J.E. Crow, Phys. Rev. B 42, 7567 (1990)

    Article  ADS  Google Scholar 

  78. W.Y. Yu, A. Twardowski, L.P. Fu, A. Petrou, B.T. Jonker, Phys. Rev. B 51, 9722 (1995)

    Article  ADS  Google Scholar 

  79. J.M. Luttinger, Phys. Rev. 102, 1030 (1956)

    Article  MATH  ADS  Google Scholar 

  80. W. Pacuski et al., Acta Phys. Pol. A 110, 303 (2006)

    ADS  Google Scholar 

  81. A. Abragam, M.H.L. Pryce, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 205, 135 (1951)

    Google Scholar 

  82. P. Sati, C. Deparis, C. Morhain, S. Schafer, A. Stepanov, Phys. Rev. Lett. 98, 137204 (2007)

    Article  ADS  Google Scholar 

  83. N. Jedrecy, H.J.V. Bardeleben, Y. Zheng, J.L. Cantin, Phys. Rev. B 69, R041308 (2004)

    Article  ADS  Google Scholar 

  84. S. Marcet et al., Phys. Rev. B 74, 125201 (2006)

    Article  ADS  Google Scholar 

  85. R. Heitz et al., Appl. Phys. Lett. 67, 2822 (1995)

    Article  ADS  Google Scholar 

  86. E. Malguth et al., Phys. Rev. B 74, 165202 (2006)

    Article  ADS  Google Scholar 

  87. P. Sati et al., Phys. Rev. Lett. 96, 017203 (2006)

    Article  ADS  Google Scholar 

  88. T. Hoshina, J. Phys. Soc. Jpn. 21, 1608 (1966)

    Article  ADS  Google Scholar 

  89. A. Lewicki, A.I. Schindler, I. Miotkowski, B.C. Crooker, J.K. Furdyna, Phys. Rev. B 43, 5713 (1991)

    Article  ADS  Google Scholar 

  90. E. Chikoidze, H.J.V. Bardeleben, Y. Dumont, P. Galtier, J.L. Cantin, J. Appl. Phys. 97, 10D316 (2005)

    Google Scholar 

  91. A. Bonanni et al., Phys. Rev. B 75, 125210 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Results reviewed in this Chapter originate from collaborations with A. Bonanni, E. Chikoidze, C. Deparis, T. Dietl, Y. Dumont, H. Mariette, J. Kossut, C. Morhain, A. Navarro-Quezada, E. Przeździecka, E. Sarigiannidou, P. Sati, A. Stepanov, M. Wegscheider, and many others. We acknowledge for their contribution. Special thanks should be given to J. Cibert, D. Ferrand, J.A. Gaj, and P. Kossacki, who were the supervisors of my thesis devoted to the spectroscopy of wide-gap DMSs [45].

We acknowledge financial support from the Polish Ministry of Science and Higher Education, the French Ministry of Foreign Affairs, the Marie Curie Actions (contract number MTKD-CT-2005-029671), the Foundation for Polish Science, the Deutscher Akademischer Austausch Dienst, and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Pacuski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pacuski, W. (2010). Optical Spectroscopy of Wide-Gap Diluted Magnetic Semiconductors. In: Gaj, J., Kossut, J. (eds) Introduction to the Physics of Diluted Magnetic Semiconductors. Springer Series in Materials Science, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15856-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15856-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15855-1

  • Online ISBN: 978-3-642-15856-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics