Advertisement

Organic Acid Prediction in Biogas Plants Using UV/vis Spectroscopic Online-Measurements

  • Christian Wolf
  • Daniel Gaida
  • André Stuhlsatz
  • Seán McLoone
  • Michael Bongards
Part of the Communications in Computer and Information Science book series (CCIS, volume 97)

Abstract

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes, making a reliable online-measurement system absolutely necessary. This paper introduces a novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200nm to 750nm. Advanced pattern recognition methods, like LDA, Generalized Discriminant Analysis (GerDA) and SVM, are then used to map the measured absorption spectra to laboratory measurements of organic acid concentrations. The validation of the approach at a full-scale 1.3MW industrial biogas plant shows that more than 87% of the measured organic acid concentrations can be detected correctly.

Keywords

LDA GerDA SVM classification UV/vis spectroscopy organic acids online-measurement anaerobic digestion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puñal, A., Palazzotto, L., Bouvier, J.C., Conte, T., Steyer, J.P.: Automatic control of VFA in anaerobic digestion using a fuzzy logic based approach. In: IWA VII Latin American Workshop and Symposium on Anaerobic Digestion, pp. 119–126 (2002)Google Scholar
  2. 2.
    Stuhlsatz, A., Lippel, J., Zielke, T.: Discriminative Feature Extraction with Deep Neural Networks. In: Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, pp. 18–23 (2010)Google Scholar
  3. 3.
    Duda, R.O., Hart, E., Stork, D.G.: Pattern Classification. In: John W., Sons. (eds.) Inc. (2000)Google Scholar
  4. 4.
    Matlab®, The Mathworks, http://www.mathworks.com (last accessed 25.04.2010)
  5. 5.
    Stuhlsatz, A., Lippel, J., Zielke, T.: Feature Extraction for Simple Classification. In: Proceedings of the International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, pp. 23–26 (2010)Google Scholar
  6. 6.
    Hinton, G., Osindero, S., Teh, Y.W.: A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18(7), 1527–1554 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  8. 8.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/-cjlin/libsvm
  9. 9.
    Schmidt, H., Rehorek, A.: New Online-Measurement Methods for Biogas Plants. Diploma Thesis at the Cologne University of Applied Sciences. Cologne (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Wolf
    • 1
  • Daniel Gaida
    • 2
  • André Stuhlsatz
    • 3
  • Seán McLoone
    • 1
  • Michael Bongards
    • 2
  1. 1.Department of Electronic EngineeringNational University of Ireland MaynoothCo. KildareIreland
  2. 2.Institute of Automation and Industrial ITCologne University of Applied SciencesGummersbachGermany
  3. 3.Department of Mechanical and Process EngineeringDüsseldorf University of Applied Sciences, Institute for Information TechnologyDüsseldorfGermany

Personalised recommendations