Content-Based Cover Song Identification in Music Digital Libraries

  • Riccardo Miotto
  • Nicola Montecchio
  • Nicola Orio
Part of the Communications in Computer and Information Science book series (CCIS, volume 91)


In this paper we report the status of our research on the problem of content-based cover song identification in music digital libraries. An approach which exploits both harmonic and rhythmic facets of music is presented and evaluated against a test collection. Directions for future work are proposed, and particular attention is given to the scalability challenge.


Test Collection Music Genre Locality Sensitive Hashing Harmonic Content Music Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of audio fingerprinting. Journal of VLSI Signal Processing 41, 271–284 (2005)CrossRefGoogle Scholar
  2. 2.
    Cano, P., Koppenberger, M., Wack, N.: Content-based music audio recommendation. In: Proceedings of the ACM International Conference on Multimedia, pp. 211–212 (2005)Google Scholar
  3. 3.
    Wang, A.: An industrial-strength audio search algorithm. In: Proceedings of ISMIR (2003)Google Scholar
  4. 4.
    Downie, J.: Music information retrieval. Annual Review of Information Science and Technology 37, 295–340 (2003)CrossRefGoogle Scholar
  5. 5.
    Kurth, F., Muller, M.: Efficient index-based audio matching. IEEE Transactions on Audio, Speech, and Language Processing 16(2), 382–395 (2008)CrossRefGoogle Scholar
  6. 6.
    Serra, J., Gomez, E., Herrera, P., Serra, X.: Chroma binary similarity and local alignment applied to cover song identification. IEEE Transactions on Audio, Speech, and Language Processing 16(6), 1138–1151 (2008)CrossRefGoogle Scholar
  7. 7.
    Miotto, R., Orio, N.: A music identification system based on chroma indexing and statistical modeling. In: Proceedings of International Conference on Music Information Retrieval, pp. 301–306 (2008)Google Scholar
  8. 8.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. The VLDB Journal, 518–529 (1999)Google Scholar
  9. 9.
    Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Processing Magazine 25(2), 128–131 (2008)CrossRefGoogle Scholar
  10. 10.
    Miotto, R., Montecchio, N.: Integration of chroma and rhythm histogram features in a music identification system. In: Proceedings of the Workshop on Exploring Musical Information Spaces, WEMIS (2009)Google Scholar
  11. 11.
    Lidy, T., Rauber, A.: Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In: Proceedings of International Conference on Music Information Retrieval, pp. 34–41 (2005)Google Scholar
  12. 12.
    Ellis, D., Poliner, G.: Identifying ‘cover songs’ with chroma features and dynamic programming beat tracking. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 4, pp. IV-1429–IV-1432 (2007)Google Scholar
  13. 13.
    Fox, E., Shaw, J.: Combination of multiple searches. In: Proceedings of the Second Text REtrieval Conference (TREC-2), pp. 243–249 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Riccardo Miotto
    • 1
  • Nicola Montecchio
    • 1
  • Nicola Orio
    • 1
  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations