Abstract
Surrogate models, as used for the Design and Analysis of Computer Experiments (DACE), can significantly reduce the resources necessary in cases of expensive evaluations. They provide a prediction of the objective and of the corresponding uncertainty, which can then be combined to a figure of merit for a sequential optimization. In single-objective optimization, the expected improvement (EI) has proven to provide a combination that balances successfully between local and global search. Thus, it has recently been adapted to evolutionary multi-objective optimization (EMO) in different ways. In this paper, we provide an overview of the existing EI extensions for EMO and propose new formulations of the EI based on the hypervolume. We set up a list of necessary and desirable properties, which is used to reveal the strengths and weaknesses of the criteria by both theoretical and experimental analyses.
Keywords
- Design and Analysis of Computer Experiments
- Expected Improvement
- Hypervolume Indicator
- Multi-Objective Optimization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Knowles, J., Nakayama, H.: Meta-modeling in multiobjective optimization. In: Branke, J., et al. (eds.) Multiobjective Optimization – Interactive and Evolutionary Approaches, pp. 461–478. Springer, Berlin (2008)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989)
Mockus, J.B., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seeking the extremum. In: Dixon, L.C.W., Szegö, G.P. (eds.) Towards Global Optimization, vol. 2, pp. 117–129. Amsterdam, New York (1978)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: McKay, B., et al. (eds.) Proc. CEC, pp. 773–780. IEEE, Los Alamitos (2005)
Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Trans. Evol. Comput. 14(1), 58–79 (2010)
Emmerich, M.: Single- and Multi-objective Evolutionary Design Optimization Assisted by Gaussian Random Field Metamodels. PhD thesis, Universität Dortmund (2005)
Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)
Liu, W., Zhang, Q., Tsang, E., Liu, C., Virginas, B.: On the performance of metamodel assisted MOEA/D. In: Kang, L., Liu, Y., Zeng, S., et al. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 547–557. Springer, Heidelberg (2007)
Emmerich, M., Deutz, A.H., Klinkenberg, J.W.: The computation of the expected improvement in dominated hypervolume of pareto front approximations. Technical Report 4-2008 Leiden Institute of Advanced Computer Science, LIACS (2008), http://www.liacs.nl/~emmerich/TR-ExI.pdf
Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. (2010); Early Access (will be published)
Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Jeong, S., Obayashi, S.: Efficient global optimization (EGO) for multi-objective problem and data mining. In: Corne, D., et al. (eds.) Proc. CEC, pp. 2138–2145. IEEE, Los Alamitos (2005)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited amount of evaluations using model-assisted \(\mathcal{S}\)-metric selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York (1986)
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In: Garibay, I., et al. (eds.) Proc. FOGA, pp. 87–102. ACM, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W. (2010). On Expected-Improvement Criteria for Model-based Multi-objective Optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)