Skip to main content

Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

  • 3045 Accesses

Abstract

In this paper, we elaborate how decision space diversity can be integrated into indicator-based multiobjective search. We introduce DIOP, the diversity integrating multiobjective optimizer, which concurrently optimizes two set-based diversity measures, one in decision space and the other in objective space. We introduce a possibility to improve the diversity of a solution set, where the minimum proximity of these solutions to the Pareto-front is user-defined. Experiments show that DIOP is able to optimize both diversity measures and that the decision space diversity can indeed be improved if the required maximum distance of the solutions to the front is relaxed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley, Chichester (1999)

    Google Scholar 

  2. Deb, K., Agrawal, S.: A niched-penalty approach for constraint handling in genetic algorithms. In: ICANNGA (1999)

    Google Scholar 

  3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. TIK Report 112, ETH Zurich (2001)

    Google Scholar 

  4. Deb, K., Tiwari, S.: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization. EJOR 185(3), 1062–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gaston, K.J., Spicer, J.I.: Biodiversity: An Introduction, 2nd edn. Wiley-Blackwell, Chichester (2004)

    Google Scholar 

  6. Izsák, J., Papp, L.: A link between ecological diversity indices and measures of biodiversity. Ecological Modelling 130(1-3), 151–156 (2000)

    Article  Google Scholar 

  7. Li, X., Zheng, J., Xue, J.: A Diversity Metric for Multi-objective Evolutionary Algorithms. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 68–73. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Sarma, J., Jong, K.A.D.: An analysis of the effects of neighborhood size and shape on local selection algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 236–244. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Shimodaira, H.: A diversity-control-oriented genetic algorithm (dcga): Performance in function optimization. In: Genetic and Evolutionary Computation Conference, p. 366 (2000)

    Google Scholar 

  11. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Solow, A.R., Polasky, S.: Measuring biological diversity. Environmental and Ecological Statistics 1(2), 95–103 (1994)

    Article  Google Scholar 

  13. Squillero, G., Tonda, A.P.: A novel methodology for diversity preservation in evolutionary algorithms. In: GECCO, pp. 2223–2226. ACM, New York (2008)

    Chapter  Google Scholar 

  14. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  15. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolutionary Computation 11(2), 151–167 (2003)

    Article  Google Scholar 

  16. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: Gas with search space division schemes. Evolutionary Computation 5(1), 61–80 (1997)

    Article  Google Scholar 

  17. Ulrich, T., Bader, J., Zitzler, E.: Integrating Decision Space Diversity into Hypervolume-based Multiobjective Search. In: Genetic and Evolutionary Computation Conference (to appear, 2010)

    Google Scholar 

  18. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Congress on Evolutionary Computation, pp. 1633–1640 (2002)

    Google Scholar 

  19. Weitzman, M.: On diversity. The Quarterly Journal of Economics 107(2), 363–405 (1992)

    Article  MATH  Google Scholar 

  20. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation (2009) (accepted)

    Google Scholar 

  21. Zitzler, E., Thiele, L., Bader, J.: On Set-Based Multiobjective Optimization (Revised Version). TIK Report 300, ETH Zurich (2008)

    Google Scholar 

  22. Zitzler, E., Thiele, L., Bader, J.: On Set-Based Multiobjective Optimization. IEEE Transactions on Evolutionary Computation (2009) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ulrich, T., Bader, J., Thiele, L. (2010). Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics