Skip to main content

Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6238)

Abstract

The average ranking (AR) method has been shown highly effective to provide sufficient selection pressure searching towards Pareto optimal set in many-objective optimization. However, as lack of diversity maintenance mechanism, the obtained final set may only concentrate in a subregion of Pareto front. In this paper, we propose a diversity maintenance strategy for AR to balance convergence and diversity during evolution process. We employ grid to define an adaptive neighborhood for each individual, whose size varies with the number of objectives. Moreover, a layering selection scheme integrates it and AR to pick out well-converged individuals and prohibit or postpone the archive of adjacent individuals. From an extensive comparative study with original AR and two other diversity maintenance methods, the proposed method shows a good balance among convergence, uniformity and spread.

Keywords

  • Multiobjective optimization
  • Many-objective optimization
  • Average ranking
  • Diversity maintenance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15844-5_65
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-15844-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Purshouse, R.C., Fleming, P.J.: Conflict, Harmony and Independence: Relationships in Evolutionary Multi-criterion Optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: 2008 Congress on Evolutionary Computation (CEC 2008), pp. 2424–2431. IEEE Service Center, Hong Kong (2008)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control, CIMNE, Barcelona, Spain, pp. 95–100 (2002)

    Google Scholar 

  5. Corne, D., Knowles, J.: Techniques for highly multiobjective optimization: Some non-dominated points are better than others. In: Proc. of 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), London, pp. 773–780 (July 2007)

    Google Scholar 

  6. Jaimes, A.L., Quintero, L.V.S., Coello Coello, A.C.: Ranking Methods in Many-objective Evolutionary Algorithms. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, pp. 413–434. Springer, Berlin (2009)

    CrossRef  Google Scholar 

  7. Adra, S.F., Fleming, P.J.: A Diversity Management Operator for Evolutionary Many-Objective Optimisation. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 81–94. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  8. Bentley, P.J., Wakefield, J.P.: Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms. In: Soft Computing in Engineering Design and Manufacturing, Part 5, London, pp. 231–240 (June 1997)

    Google Scholar 

  9. Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Trans. Evol. Comput. 7(2), 100–116 (2003)

    CrossRef  Google Scholar 

  10. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  11. Li, M., Zheng, J.: Spread Assessment for Evolutionary Multi-Objective Optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 216–230. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  12. Deb, K., Jain, S.: Running Performance Metrics for Evolutionary Multi-Objective Optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 13–20 (2002)

    Google Scholar 

  13. Goh, C.K., Tan, K.C.: An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

    CrossRef  Google Scholar 

  14. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. in Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Theoretical Advances and Applications, pp. 105–145. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Zheng, J., Li, K., Yuan, Q., Shen, R. (2010). Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)