Skip to main content

Influence of Geometric Variations on LV Activation Times: A Study on an Atlas-Based Virtual Population

  • Conference paper
Statistical Atlases and Computational Models of the Heart (STACOM 2010)

Abstract

We present the fully automated pipeline we have developed to obtain electrophysiological simulations of the heart on a large atlasbased virtual population. This virtual population was generated from a statistical model of left ventricular geometry, represented by a surface model. Correspondence between tetrahedralized volumetric meshes was obtained using Thin Plate Spline warps. Simulations are based on the fast solving of Eikonal equations, and stimulation sites correspond to physiological activation. We report variations of total activation time introduced by geometry, as well as variations in the location of last activation. The obtained results suggest that the total activation time has a strong dependence on LV geometrical variation such as dilation-tohypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, W.T., Fisher, W.G., Smith, A.L., DeLurgio, D.B., Leon, A.R., Loh, E., Kocovic, D.Z., Packer, M., Clavell, A.L., Hayes, D.L., Ellestad, M., Messenger, J.: Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002)

    Article  Google Scholar 

  2. Chung, E.S., Leon, A.R., Tavazzi, L., Sun, J.P., Nihoyannopoulos, P., Merlino, J., Abraham, W.T., Ghio, S., Leclercq, C., Bax, J.J., Yu, C.M., Gorcsan III, J., St. John Sutton, M., De Sutter, J., Murillo, J.: Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008)

    Article  Google Scholar 

  3. Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: Trainable method of parametric shape description. Image Vis. Comput. 10, 289–294 (1992)

    Article  Google Scholar 

  4. Goodall, C.: Procrustes methods in shape analysis. J. R. Stat. Soc. Ser. B-Stat. Meth. 53, 285–339 (1991)

    MATH  MathSciNet  Google Scholar 

  5. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. S6(2), 559–572 (1901)

    Google Scholar 

  6. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441, 498–520 (1933)

    Article  Google Scholar 

  7. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13, 543–563 (2009)

    Article  Google Scholar 

  8. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  9. Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy.: Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thorac. Surg. 31, 915–921 (2007)

    Article  Google Scholar 

  10. Streeter Jr., D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M., Sperelakis, N., Geigert, S.R. (eds.) Handbook of Physiology: The Cardiovasular System. The Heart, vol. I, pp. 61–112. American Physiology Society, Hyattsville (1979)

    Google Scholar 

  11. Caldwell, B.J., Trew, M.L., Sands, G.B., Hooks, D.A., LeGrice, I.J., Smaill, B.H.: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2, 433–440 (2009)

    Article  Google Scholar 

  12. Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41, 899–912 (1970)

    Google Scholar 

  13. Tomlinson, K.A., Hunter, P.J., Pullan, A.J.: A finite element method for an Eikonal equation model of myocardial excitation wavefront propagation. SIAM J. Appl. Math. 63, 324–350 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chinchapatnam, P., Rhode, K.S., Ginks, M., Rinaldi, C.A., Lambiase, P., Razavi, R., Arridge, S., Sermesant, M.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Trans. Med. Imag. 27, 1631–1642 (2008)

    Article  Google Scholar 

  15. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoogendoorn, C., Pashaei, A., Sebastián, R., Sukno, F.M., Cámara, O., Frangi, A.F. (2010). Influence of Geometric Variations on LV Activation Times: A Study on an Atlas-Based Virtual Population. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics