Advertisement

Influence of Geometric Variations on LV Activation Times: A Study on an Atlas-Based Virtual Population

  • Corné Hoogendoorn
  • Ali Pashaei
  • Rafael Sebastián
  • Federico M. Sukno
  • Oscar Cámara
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6364)

Abstract

We present the fully automated pipeline we have developed to obtain electrophysiological simulations of the heart on a large atlasbased virtual population. This virtual population was generated from a statistical model of left ventricular geometry, represented by a surface model. Correspondence between tetrahedralized volumetric meshes was obtained using Thin Plate Spline warps. Simulations are based on the fast solving of Eikonal equations, and stimulation sites correspond to physiological activation. We report variations of total activation time introduced by geometry, as well as variations in the location of last activation. The obtained results suggest that the total activation time has a strong dependence on LV geometrical variation such as dilation-tohypertrophy.

Keywords

Cardiac Resynchronization Therapy Geometric Variation Eikonal Equation Pace Strategy Left Ventricular Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, W.T., Fisher, W.G., Smith, A.L., DeLurgio, D.B., Leon, A.R., Loh, E., Kocovic, D.Z., Packer, M., Clavell, A.L., Hayes, D.L., Ellestad, M., Messenger, J.: Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002)CrossRefGoogle Scholar
  2. 2.
    Chung, E.S., Leon, A.R., Tavazzi, L., Sun, J.P., Nihoyannopoulos, P., Merlino, J., Abraham, W.T., Ghio, S., Leclercq, C., Bax, J.J., Yu, C.M., Gorcsan III, J., St. John Sutton, M., De Sutter, J., Murillo, J.: Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117, 2608–2616 (2008)CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: Trainable method of parametric shape description. Image Vis. Comput. 10, 289–294 (1992)CrossRefGoogle Scholar
  4. 4.
    Goodall, C.: Procrustes methods in shape analysis. J. R. Stat. Soc. Ser. B-Stat. Meth. 53, 285–339 (1991)MATHMathSciNetGoogle Scholar
  5. 5.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. S6(2), 559–572 (1901)Google Scholar
  6. 6.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441, 498–520 (1933)CrossRefGoogle Scholar
  7. 7.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13, 543–563 (2009)CrossRefGoogle Scholar
  8. 8.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 567–585 (1989)MATHCrossRefGoogle Scholar
  9. 9.
    Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy.: Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thorac. Surg. 31, 915–921 (2007)CrossRefGoogle Scholar
  10. 10.
    Streeter Jr., D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M., Sperelakis, N., Geigert, S.R. (eds.) Handbook of Physiology: The Cardiovasular System. The Heart, vol. I, pp. 61–112. American Physiology Society, Hyattsville (1979)Google Scholar
  11. 11.
    Caldwell, B.J., Trew, M.L., Sands, G.B., Hooks, D.A., LeGrice, I.J., Smaill, B.H.: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2, 433–440 (2009)CrossRefGoogle Scholar
  12. 12.
    Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41, 899–912 (1970)Google Scholar
  13. 13.
    Tomlinson, K.A., Hunter, P.J., Pullan, A.J.: A finite element method for an Eikonal equation model of myocardial excitation wavefront propagation. SIAM J. Appl. Math. 63, 324–350 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chinchapatnam, P., Rhode, K.S., Ginks, M., Rinaldi, C.A., Lambiase, P., Razavi, R., Arridge, S., Sermesant, M.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Trans. Med. Imag. 27, 1631–1642 (2008)CrossRefGoogle Scholar
  15. 15.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Corné Hoogendoorn
    • 1
    • 2
  • Ali Pashaei
    • 1
    • 2
  • Rafael Sebastián
    • 3
  • Federico M. Sukno
    • 2
    • 1
  • Oscar Cámara
    • 1
    • 2
  • Alejandro F. Frangi
    • 1
    • 2
    • 4
  1. 1.Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)Universitat Pompeu FabraBarcelonaSpain
  2. 2.Networking Center on Biomedical Research - CIBER-BBNBarcelonaSpain
  3. 3.Computational Multi-Scale Physiology LabUniversitat de ValènciaValenciaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA) 

Personalised recommendations