Advertisement

Modeling Drug Effects on Personalized 3D Models of the Heart: A Simulation Study

  • Rafael Sebastian
  • Elvio Heidenreich
  • Lydia Dux-Santoy
  • Jose F. Rodriguez
  • Jose Maria Ferrero
  • Javier Saiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6364)

Abstract

The use of anti-arrhythmic drugs is common to treat heart rhythm disorders. Computational modeling and simulation are powerful tools that can be used to investigate the effects of specific drugs on cardiac electrophysiology. In this work a patient-specific anatomical heart model is built to study the effects of dofetilide, a drug that affects IKr current in cardiac cells. We study the multi-scale effects of the drug, from cellular to organ level, by simulating electrical propagation on tissue coupled cellular ion kinetics for several heart beats. Different cell populations configurations namely endocardial, midmyocardial and epicardial are used to test the effect of tissue heterogeneity. Results confirmed the expected effects of dofetilide at cellular level, increasing the action potential duration. Pseudo-ECGs obtained for each heart beat correlated well with cellular results showing prolongation of QT segment. These techniques can be applied over the development of more complex drugs that affect multiple cellular currents.

Keywords

Cardiac electrophysiology multi-scale modeling simulation drug modeling therapy planning drug cardio-toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yap, Y.G., Camm, A.J.: Drug induced qt prolongation and torsades de pointes. Heart 89(11), 1363–1372 (2003)CrossRefGoogle Scholar
  2. 2.
    Recanatini, M., Poluzzi, E., Masetti, M., Cavalli, A., Ponti, F.D.: Qt prolongation through herg k(+) channel blockade: current knowledge and strategies for the early prediction during drug development. Med. Res. Rev. 25(2), 133–166 (2005)CrossRefGoogle Scholar
  3. 3.
    Gintant, G.A., Su, Z., Martin, R.L., Cox, B.F.: Utility of herg assays as surrogate markers of delayed cardiac repolarization and qt safety. Toxicol. Pathol. 34(1), 81–90 (2006)CrossRefGoogle Scholar
  4. 4.
    Tusscherten, K.H.W.J., Panfilov, A.V.: Eikonal formulation of the minimal principle for scroll wave filaments. Phys. Rev. Lett. 93(10), 108106 (2004)CrossRefGoogle Scholar
  5. 5.
    Helm, P.: A novel technique for quantifying variability of cardiac anatomy applica- tion to the dyssynchronous failing heart, Ph.D. thesis, Johns Hopkins University (2005)Google Scholar
  6. 6.
    Heidenreich, E., Ferrero, J.M., Doblare, M., Rodriguez Jose, F.: Adaptive macro finite elements for the numerical solution of monodomain equation in cardiac electrophysiology. Annals of Biomedical Engineering 38, 2331–2345 (2010)CrossRefGoogle Scholar
  7. 7.
    Drouin, E., Charpentier, F., Gauthier, C., Laurent, K., Marec, H.L.: Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of m cells. J. Am. Coll. Cardiol. 26(1), 185–192 (1995)CrossRefGoogle Scholar
  8. 8.
    Antzelevitch, C., Sicouri, S., Litovsky, S.H., Lukas, A., Krishnan, S.C., Diego, J.M.D., Gintant, G.A., Liu, D.W.: Heterogeneity within the ventricular wall. electrophysiology and pharmacology of epicardial, endocardial, and m cells. Circ. Res. 69(6), 1427–1449 (1991)Google Scholar
  9. 9.
    Sicouri, S., Fish, J., Antzelevitch, C.: Distribution of m cells in the canine ventricle. J. Cardiovasc. Electrophysiol. 5(10), 824–837 (1994)CrossRefGoogle Scholar
  10. 10.
    ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4), 1573–1589 (2004)CrossRefGoogle Scholar
  11. 11.
    Heidenreich, E.A.: Algoritmos para ecuaciones de reaccion difusion aplicados a electrofisiologia, Ph.D. thesis, Departamento de Ingenieria Mecanica, Universidad de Zaragoza (2009)Google Scholar
  12. 12.
    Plonsey, R.: Bioelectric sources arising in excitable fibers (alza lecture). Ann. Biomed. Eng. 16(6), 519–546 (1988)CrossRefGoogle Scholar
  13. 13.
    Potse, M., Dub, B., Richer, J., Vinet, A., Gulrajani, R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12 Pt 1), 2425–2435 (2006)CrossRefGoogle Scholar
  14. 14.
    Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)Google Scholar
  15. 15.
    Tusscher, K.H.W.J.T., Panfilov, A.V.: Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51(23), 6141–6156 (2006)CrossRefGoogle Scholar
  16. 16.
    Yan, G.X., Wu, Y., Liu, T., Wang, J., Marinchak, R.A., Kowey, P.R.: Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-qt syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 103(23), 2851–2856 (2001)Google Scholar
  17. 17.
    Okada, Y., Ogawa, S., Sadanaga, T., Mitamura, H.: Assessment of reverse use-dependent blocking actions of class iii antiarrhythmic drugs by 24-hour holter electrocardiography. J. Am. Coll. Cardiol. 27(1), 84–89 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rafael Sebastian
    • 1
  • Elvio Heidenreich
    • 2
  • Lydia Dux-Santoy
    • 3
  • Jose F. Rodriguez
    • 4
  • Jose Maria Ferrero
    • 3
  • Javier Saiz
    • 3
  1. 1.Department of Computer ScienceUniversitat de ValenciaValenciaSpain
  2. 2.Instituto de Investigaciones Cientificas y Tecnicas para la DefensaBuenos AiresArgentina
  3. 3.Grupo de Bioelectronica (GBIO), I3BHUniversitat Politecnica de ValenciaValenciaSpain
  4. 4.Grupo de Estructuras y Modelado de Materiales (GEMM)Universidad de ZaragozaZaragozaSpain

Personalised recommendations