Skip to main content

Exploring Continuous Action Spaces with Diffusion Trees for Reinforcement Learning

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

  • 1801 Accesses

Abstract

We propose a new approach for reinforcement learning in problems with continuous actions. Actions are sampled by means of a diffusion tree, which generates samples in the continuous action space and organizes them in a hierarchical tree structure. In this tree, each subtree holds a subset of the action samples and thus holds knowledge about a subregion of the action space. Additionally, we store the expected long-term return of the samples of a subtree in the subtree’s root. Thus, the diffusion tree integrates both, a sampling technique and a means for representing acquired knowledge in a hierarchical fashion. Sampling of new action samples is done by recursively walking down the tree. Thus, information about subregions stored in the roots of all subtrees of a branching point can be used to direct the search and to generate new samples in promising regions. This facilitates control of the sample distribution, which allows for informed sampling based on the acquired knowledge, e.g. the expected return of a region in the action space. In simulation experiments, we show how this can be used conceptually for exploring the state-action space efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  2. Gross, H.M., Stephan, V., Boehme, H.J.: Sensory-based robot navigation using self-organizing networks and q-learning. In: Proceedings of the 1996 World Congress on Neural Networks, pp. 94–99. Psychology Press, San Diego (1996)

    Google Scholar 

  3. Gaskett, C., Wettergreen, D., Zelinsky, A., Zelinsky, E.: Q-learning in continuous state and action spaces. In: Australian Joint Conference on Artificial Intelligence, pp. 417–428. Springer, Heidelberg (1999)

    Google Scholar 

  4. Atkeson, C.G.: Randomly sampling actions in dynamic programming. In: 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), pp. 185–192 (2007)

    Google Scholar 

  5. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal planning in large markov decision processes. Machine Learning 49, 193–208 (2002)

    Article  MATH  Google Scholar 

  6. Ross, S., Chaib-Draa, B., Pineau, J.: Bayesian reinforcement learning in continuous pomdps with application to robot navigation. In: 2008 IEEE International Conference on Robotics and Automation (ICRA 2008), pp. 2845–2851. IEEE, Los Alamitos (May 2008)

    Chapter  Google Scholar 

  7. Lazaric, A., Restelli, M., Bonarini, A.: Reinforcement learning in continuous action spaces through sequential monte carlo methods. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 833–840. MIT Press, Cambridge (2008)

    Google Scholar 

  8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (March 1998)

    Google Scholar 

  9. Neal, R.M.: Density modeling and clustering using dirichlet diffusion trees. In: Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting, pp. 619–629 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vollmer, C., Schaffernicht, E., Gross, HM. (2010). Exploring Continuous Action Spaces with Diffusion Trees for Reinforcement Learning. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics