Skip to main content

A Hebbian-Based Reinforcement Learning Framework for Spike-Timing-Dependent Synapses

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

In this study a combination of both the Hebbian-based and reinforcement learning rule is presented. The concept permits the Hebbian rules to update the values of the synaptic parameters using both the value and the sign supplied by a reward value at any time instant. The latter is calculated as the distance between the output of the network and a reference signal. The network is a spiking neural network with spike-timing-dependent synapses. It is tested to learn the XOR computations on a temporally-coded basis. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of both Hebbian and reinforcement learning. This supports adopting the introduced approach for intuitive signal processing and computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Brain, neural networks, and computation. Rev. Mod. Phys. 71(2), S431–S437 (1999)

    Article  Google Scholar 

  2. Gerstner, W., Kistler, W.: Mathematical Formulations of Hebbian Learning. Biological Cybernetics 87(5-6), 404–415 (2002)

    Article  MATH  Google Scholar 

  3. Hebb, D.O.: The Organization of Behavior. Wiley and Son, New York (1949)

    Google Scholar 

  4. Pennartz, C.: Reinforcement learning by hebbian synapses with adaptive thresholds. Neuroscience 81(2), 303–319 (1997)

    Article  Google Scholar 

  5. Farries, M.A., Fairhall, A.L.: Reinforcement Learning With Modulated Spike Timing Dependent Synaptic Plasticity. J. Neurophysiol. 98(6), 3648–3665 (2007)

    Article  Google Scholar 

  6. Urbanczik, R., Senn, W.: Reinforcement learning in populations of spiking neurons. Nature Neuroscience 12(3), 250–252 (2009)

    Article  Google Scholar 

  7. Kempter, R., Gerstner, W., van Hemmen, J.: Hebbian learning and spiking neurons. Phys. Rev. E 59(4), 4498–4514 (1999)

    Article  MathSciNet  Google Scholar 

  8. Klemm, K., Bornholdt, S., Schuster, H.G.: Beyond hebb: Exclusive-or and biological learning. Physical Review Letters 84, 3013 (2000)

    Article  Google Scholar 

  9. Carnell, A.: An analysis of the use of hebbian and anti-hebbian spike time dependent plasticity learning functions within the context of recurrent spiking neural networks. Neurocomput. 72(4-6), 685–692 (2009)

    Article  Google Scholar 

  10. Florian, R.V.: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation 19(6), 1468–1502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, K., Kwon, D.S.: Synaptic plasticity model of a spiking neural network for reinforcement learning. Neurocomputing 71(13-15), 3037–3043 (2008)

    Article  Google Scholar 

  12. Bosman, R.J.C., van Leeuwen, W.A., Wemmenhove, B.: Combining hebbian and reinforcement learning in a minibrain model. Neural Networks 17(1), 29–36 (2004)

    Article  MATH  Google Scholar 

  13. de Queiroz, M.S., de Berrdo, R.C., de Pdua Braga, A.: Reinforcement learning of a simple control task using the spike response model. Neurocomputing 70(1-3), 14–20 (2006)

    Article  Google Scholar 

  14. Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proc. of the Nat. Academy of Sciences of the USA 95(9), 5323–5328 (1998)

    Article  Google Scholar 

  15. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3(9), 2259 (2000)

    Google Scholar 

  16. Seung, H.: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40(6), 1063–1073 (2003)

    Article  Google Scholar 

  17. Xie, X., Seung, H.S.: Learning in neural networks by reinforcement of irregular spiking. Phys. Rev. E 69(4), 69–79 (2004)

    Article  MathSciNet  Google Scholar 

  18. El-Laithy, K., Bogdan, M.: Synchrony state generation in artificial neural networks with stochastic synapses. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 181–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. El-Laithy, K., Bogdan, M.: Predicting spike-timing of a thalamic neuron using a stochastic synaptic model. In: ESANN Proceedings, pp. 357–362 (2010)

    Google Scholar 

  20. Namarvar, H.H., Liaw, J.S., Berger, T.W.: A new dynamic synapse neural network for speech recognition. In: Proc. IEEE Int. Conf. Neural Networks, pp. 2985–2990 (2001)

    Google Scholar 

  21. Liaw, J., Berger, T.W.: Dynamic synapse: A new concept of neural representation and computation. Hippocampus 6, 591–600 (1996)

    Article  Google Scholar 

  22. Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic plasticity based on spike timing. Science 98, 459–478 (2008)

    MATH  MathSciNet  Google Scholar 

  23. El-Laithy, K., Bogdan, M.: On the Role of Synaptic Dynamics in the Generation of Synchrony States (2010)

    Google Scholar 

  24. van Rossum, M.C.W.: A Novel Spike Distance. Neural Comp. 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

  25. Kimura, D., Hayakawa, Y.: Reinforcement learning of recurrent neural network for temporal coding. Neurocomputing 71(16-18), 3379–3386 (2008)

    Article  Google Scholar 

  26. Fiete, I.R., Seung, H.S.: Gradient learning in spiking neural networks by dynamic perturbation of conductances. Physical Review Letters 97(4), 048104 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Laithy, K., Bogdan, M. (2010). A Hebbian-Based Reinforcement Learning Framework for Spike-Timing-Dependent Synapses. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics