Skip to main content

Visualization and Exploration of Segmented Anatomic Structures

  • Chapter
  • First Online:
Book cover Biomedical Image Processing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 3686 Accesses

Summary

This chapter provides an introduction into the visualization of segmented anatomic structures using indirect and direct volume rendering methods. Indirect volume rendering typically generates a polygonal representation of an organ surface, whereas this surface may exhibit staircasing artifacts due to the segmentation. Since our visual perception is highly sensitive to discontinuities, it is important to provide adequate methods to remove or at least reduce these artifacts. One of the most frequently visualized anatomical structures are blood vessels. Their complex topology and geometric shape represent specific challenges. Therefore, we explore the use of model assumptions to improve the visual representation of blood vessels. Finally, virtual endoscopy as one of the novel exploration methods is discussed.

On March 28, 2010, our colleague Dirk Bartz passed away unexpectedly. We will remember him, not only for his contributions to this field, but for his personal warmth and friendship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Preim, D. Bartz, in Visualization in Medicine. Theory, Algorithms, and Applications (Morgan Kaufmann, Burlington, 2007)

    Google Scholar 

  2. K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, D. Weiskopf, Real-time Volume Graphics (A.K. Peters, 2006)

    Google Scholar 

  3. W. Lorensen, H. Cline, in Proc ACM SIGGRAPH (1987), pp. 163–169

    Google Scholar 

  4. H. Hege, M. Seebaß, D. Stalling, M. Zöckler, A generalized marching Cubes Algorithm Based on Non-Binary Classifications. Tech. Rep. ZIB SC 97-05, Zuse Institute Berlin (ZIB) (1997)

    Google Scholar 

  5. D. Banks, S. Linton, in Proc. IEEE Vis. (2003), pp. 51–58

    Google Scholar 

  6. D. Kay, D. Greenberg, in Proc. ACM SIGGRAPH (1979), pp. 158–164

    Google Scholar 

  7. M. Meißner, J. Huang, D. Bartz, K. Mueller, R. Crawfis, in Proc. IEEE/ACM Symp. Vol. Vis. Graph (2000), pp. 81–90

    Google Scholar 

  8. W. Krüger, in Proc. IEEE Vis. (1990), pp. 273–280

    Google Scholar 

  9. P. Sabella, in Proc. ACM SIGGRAPH (1988), pp. 51–58

    Google Scholar 

  10. N. Max, IEEE Trans. Vis. Comput. Graph. 1(2), 99 (1995)

    Article  Google Scholar 

  11. M. Levoy, IEEE Comput. Graph. Appl. 8(3), 29 (1988)

    Article  Google Scholar 

  12. L. Westover, in Proc. ACM SIGGRAPH (1990), pp. 367–376

    Google Scholar 

  13. K. Mueller, T. Möller, R. Crawfis, in Proc. IEEE Vis. (1999), pp. 363–371

    Google Scholar 

  14. M. Hadwigger, C. Sigg, K. Scharsach, M. Bühler, M. Gross, Comput. Graph. Forum 24(3), 303 (2005)

    Article  Google Scholar 

  15. H. Pfister, W. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. Avila, K. Martin, R. Machiraju, J. Lee, IEEE Comput. Graph. Appl. 21(3), 16 (2001)

    Article  Google Scholar 

  16. G. Kindlmann, J. Durkin, in Proc. IEEE/ACM Symp. Vol. Vis. (1998), pp. 79–86

    Google Scholar 

  17. J. Chuang, D. Weiskopf, T. Möller, IEEE Trans. Vis. Comput. Graph. 15(6), 1275 (2009)

    Article  Google Scholar 

  18. M. Chan, Y. Wu, W. Mak, W. Chen, H. Qu, IEEE Trans. Vis. Comput. Graph. 15(6), 1283 (2009)

    Article  Google Scholar 

  19. P. Lacroute, M. Levoy, in Proc. ACM SIGGRAPH (1994), pp. 451–458

    Google Scholar 

  20. C. Wittenbrink, T. Malzbender, M. Goss, in Proc. IEEE/ACM Symp. Vol. Vis. (1998), pp. 135–142

    Google Scholar 

  21. H.Hauser, L. Mroz, G. Bischi, E. Gröller, IEEE Trans. Vis. Comput. Graph. 7(3), 242 (2001)

    Google Scholar 

  22. P. Hastreiter, R. Naraghi, B. Tomandl, M. Bauer, R. Fahlbusch, Lect. Notes Comput. Sci. 2488, 396 (2002)

    Article  Google Scholar 

  23. U. Tiede, T. Schiemann, K. Höhne, in Proc. IEEE Vis. (1998), pp. 255–261

    Google Scholar 

  24. J. Beyer, M. Hadwiger, S. Wolfsberger, K. Bühler, IEEE Trans. Vis. Comput. Graph. 13(6), 1696 (2007)

    Article  Google Scholar 

  25. F. Allamandri, P. Cignoni, C. Montani, R. Scopigno, in Proc. Eurographics Workshop Vis. Sci. Computing (1998), pp. 25–34

    Google Scholar 

  26. C. Schumann, S. Oeltze, R. Bade, B. Preim, H.O. Peitgen, in IEEE/Eurographics Symp. Vis. Eurographics (2007), pp. 283–290

    Google Scholar 

  27. R. Bade, J. Haase, B. Preim, in Proc. Simul. Vis. (2006), pp. 289–304

    Google Scholar 

  28. J. Vollmer, R. Mencel, H. Müller, in Proc. Eurographics (1999), pp. 131–138

    Google Scholar 

  29. G. Taubin, in Proc. ACM SIGGRAPH (1995), pp. 351–358

    Google Scholar 

  30. G. Nielson, in Proc. IEEE Vis. (2004), pp. 489–496

    Google Scholar 

  31. J. Cebral, M. Castro, S. Appanaboyina, et al., IEEE Trans. Med. Imaging 24(4), 457 (2004)

    Article  Google Scholar 

  32. Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H.P. Seidel, ACM Trans. Graph. 22(3), 463 (2003)

    Article  Google Scholar 

  33. Y. Masutani, K. Masamune, T. Dohi, Lect. Notes Comput. Sci. 1131, 161 (1996)

    Google Scholar 

  34. H.K. Hahn, B. Preim, D. Selle, H.O. Peitgen, in IEEE Vis. (2001), pp. 395–402

    Google Scholar 

  35. C. Kirbas, F. Quek, ACM Comput. Surv. 36(2), 81 (2004)

    Article  Google Scholar 

  36. G. Gerig, T. Koller, G. Székely, C. Brechbühler, O. Kübler, in Proc. Inf. Process Med. Imaging, Lecture Notes in Computer Science, vol. 687 (1993), pp. 94–111

    Google Scholar 

  37. K.H. Höhne, B. Pflesser, A. Pommert, et al., Lect. Notes Comput. Sci. 1935, 776 (2000)

    Article  Google Scholar 

  38. P. Felkl, R. Wegenkittl, K. Bühler, in Proc. Comput. Graph. Int. (2004), pp. 70–77

    Google Scholar 

  39. J. Bloomenthal, K. Shoemake, in Proc. ACM SIGGRAPH (1991), pp. 251–256

    Google Scholar 

  40. S. Oeltze, B. Preim, in Proc. IEEE/Eurographics Symp. Vis. (2004), pp. 311–320

    Google Scholar 

  41. S. Oeltze, B. Preim, IEEE Trans. Med. Imaging 25(4), 540 (2005)

    Article  Google Scholar 

  42. M. Fiebich, C.M. Straus, V. Sehgal, B.C. Renger, K. Doi, K.R. Hoffmann, J. Comput. Assist. Tomogr. 23(1), 155 (1999)

    Article  Google Scholar 

  43. A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Lect. Notes Comput. Sci. 1496, 130 (1998)

    Article  Google Scholar 

  44. F. Vega, P. Hastreiter, R. Fahlbusch, G. Greiner, in Proc. IEEE Vis. (2005), pp. 271–278

    Google Scholar 

  45. F. Vega, N. Sauber, B. Tomandl, C. Nimsky, G. Greiner, P. Hastreiter, Lect. Notes Comput. Sci. 2879, 256 (2003)

    Article  Google Scholar 

  46. D. Bartz, Comput. Graph. Forum 24(1), 111 (2005)

    Article  Google Scholar 

  47. P. Pickhardt, J. Choi, I. Hwang, J. Butler, M. Puckett, H. Hildebrandt, R. Wong, P. Nugent, P. Mysliwiec, W. Schindler, N. Engl. J. Med. 349(23), 2191 (2003)

    Article  Google Scholar 

  48. D. Auer, L. Auer, Int. J. Neuroradiol. 4, 3 (1998)

    Google Scholar 

  49. D. Bartz, W. Straßer, O. Gürvit, D. Freudenstein, M. Skalej, in Proc. Eurographics/IEEE Symp. Vis. (2001), pp. 157–164

    Google Scholar 

  50. D. Freudenstein, A. Wagner, O. Gürvit, D. Bartz, Med. Sci. Monit. 8(9), 153 (2002)

    Google Scholar 

  51. D. Bartz, D. Mayer, J. Fischer, S. Ley, A. del Río, S. Thust, C. Heussel, H. Kauczor, W. Straßer, in Proc. IEEE Vis. (2003), pp. 177–184

    Google Scholar 

  52. F. Dachille, K. Kreeger, M. Wax, A. Kaufman, Z.Liang, in Proc. SPIE, vol. 4321 (2001), pp. 500–504

    Google Scholar 

  53. L. Hong, S. Muraki, A. Kaufman, D. Bartz, T. He, in Proc. ACM SIGGRAPH (1997), pp. 27–34

    Google Scholar 

  54. B. Preim, in Proc. Dagstuhl Workshop Sci. Vis. (2009), in press

    Google Scholar 

  55. P. Pickhardt, Am. J. Roentgenol. 181(6), 1599 (2003)

    Google Scholar 

  56. A. Krüger, C. Kubisch, G. Strauß, B. Preim, IEEE Trans. Vis. Comput. Graph. 14(6), 1491 (2008)

    Article  Google Scholar 

  57. L. Cohen, P. Basuk, J. Waye, Practical Flexible Sigmoidoscopy (Igaku-Shoin, New York, NY, 1995)

    Google Scholar 

  58. H. Fenlon, D. Nunes, P. Schroy, M. Barish, P. Clarke, J. Ferrucci, N. Engl. J. Med. 341(20), 1496 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartz, D., Preim, B. (2010). Visualization and Exploration of Segmented Anatomic Structures. In: Deserno, T. (eds) Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15816-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15816-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15815-5

  • Online ISBN: 978-3-642-15816-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics