Skip to main content

Conduction in Atomic-Sized Magnetic Metallic Constrictions Created by FIB

  • Chapter
  • First Online:
Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films

Part of the book series: Springer Theses ((Springer Theses))

  • 603 Accesses

Abstract

This chapter reports the study of electron conduction in metallic constrictions, with sizes in the atomic range. First, a novel technique for the fabrication of nano-constrictions at room temperature in metallic materials will be presented, based on the potentialities that the dual-beam equipment offers. We will show that it is possible to create atomic-sized constrictions inside the vacuum chamber where the sample is fabricated. Second, this method has been used for experiments in a magnetic metal such as iron, where phenomena such as ballistic magnetoresistance and ballistic anisotropic magnetoresistance have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. García, C. Hao, L. Yonghua, M. Muñoz, Y. Chen, Z. Cui, Z. Lu, Y. Zhou, G. Pan, A.A. Pasa, Magnetoresistance in thin permalloy film (10 nm thick and 30–200 nm wide) nanocontacts fabricated by e-beam lithography. Appl. Phys. Lett. 89, 083112 (2006)

    Article  Google Scholar 

  2. P. Krzysteczko, G. Dumpich, Magnetoresistance of Co nanoconstrictions fabricated by means of electron beam lithography. Phys. Rev. B 77, 144422 (2008)

    Article  Google Scholar 

  3. T. Huang, K. Perzlaimer, C.H. Back, In situ magnetoresistance measurements of ferromagnetic nanocontacts in the Lorentz transmission electron microscope. Phys. Rev. B 79, 024414 (2009)

    Article  Google Scholar 

  4. O. Céspedes, S.M. Watts, J.M. Coey, K. Dörr, M. Ziese, Magnetoresistance and electrical hysteresis in stable half-metallic La0.7Sr0.3 MnO3 and Fe3O4 nanoconstrictions. Appl. Phys. Lett. 87, 083102 (2005)

    Article  Google Scholar 

  5. S. Khizroev, Y. Hijazi, R. Chomko, S. Mukherjee, R. Chantell, X. Wu, R. Carley, D. Litvinov, Focused-ion-beam-fabricated nanoscale magnetoresistive ballistic sensors. Appl. Phys. Lett. 86, 042502 (2005)

    Article  Google Scholar 

  6. I.V. Roshchin, J. Yu, A.D. Kent, G.W. Stupian, M.S. Leung, Magnetic properties of Fe microstructures with focused ion beam-fabricated nano-constrictions. IEEE Trans. Magn. Mat. 37, 2101 (2001)

    Article  CAS  Google Scholar 

  7. N. Agraït, A.L. Yeyati, J.M. Van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81 (2003)

    Article  Google Scholar 

  8. C. Sirvent, J.G. Rodrigo, S. Vieira, N. JurczyszynMingo, F. Flores, Conductance step for a single-atom contact in the scanning tunneling microscope: noble and transition metals. Phys. Rev. B 53, 16086 (1996)

    Article  CAS  Google Scholar 

  9. E. Scheer, N. Agraït, J.C. Cuevas, A.L. Yeyati, B. Ludoph, A. Martín-Rodero, G.R. Bollinger, J.M. van Ruitenbeek, C. Urbina, The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154 (1998)

    Article  CAS  Google Scholar 

  10. J.J. Palacios, A.J. Pérez-Jiménez, E. Louis, E. SanFabián, J.A. Vergués, First-principles approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66, 035322 (2002)

    Article  Google Scholar 

  11. A. Hasmy, A.J. Pérez-Jiménez, J.J. Palacios, P. García-Mochales, J.L. Costa-Kramers, M. Díaz, E. Medina, P.A. Serena, Ballistic resistivity in aluminum nanocontacts. Phys. Rev. B 72, 245405 (2005)

    Article  Google Scholar 

  12. F. Pauly, M. Dreher, J.K. Viljas, M. Häfner, J.C. Cuevas, P. Nielaba, Theoretical analysis of the conductance histograms and structural properties of Ag, Pt, and Ni nanocontacts. Phys. Rev. B 74, 235106 (2006)

    Article  Google Scholar 

  13. D.R. Strachan, D.E. Johnston, B.S. Guitom, S.S. Datta, P.K. Davies, D.A. Bonell, A.T.C. Johnson, Real-time TEM imaging of the formation of crystalline nanoscale gaps. Phys. Rev. Lett. 100, 056805 (2008)

    Article  Google Scholar 

  14. L. Giannuzzi, F. Stevie, Introduction to Focused Ion Beams: Instrumentation, Techniques, Theory and Practices (Springer Science Business Media, Boston, 2005) 

    Book  Google Scholar 

  15. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963)

    Article  Google Scholar 

  16. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977)

    Article  CAS  Google Scholar 

  17. K. Hansen, S.K. Nielsen, M. Brandbyge, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Current-voltage curves of gold quantum point contacts revisited. Appl. Phys. Lett. 77, 708 (2000)

    Article  CAS  Google Scholar 

  18. K. Hansen, S.K. Nielsen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Fast and accurate current-voltage curves of metallic quantum point contacts. Rev. Sci. Instrum. 71, 1793 (2000)

    Article  CAS  Google Scholar 

  19. A. Fernández-Pacheco et al., Nanotechnology 19, 415302 (2008) (for more processes and http://iopscience.iop.org/0957-4484/19/41/415302/media for a video of the formation of a constriction)

  20. J.S. Moodera, G. Mathon, Spin polarized tunneling in ferromagnetic junctions. J. Magn. Mag. Mat. 200, 248 (1999)

    Article  CAS  Google Scholar 

  21. M. Viret, M. Gauberac, F. Ott, C. Fermon, C. Barreteau, G. Autes, R. Guirado López, Giant anisotropic magneto-resistance in ferromagnetic atomic contacts. Eur. Phys. J. B 51, 1 (2006)

    Article  CAS  Google Scholar 

  22. A. Sokolov, C. Zhang, E.Y. Tsymbal, J. Redepenning, B. Doudin, Quantized magnetoresistance in atomic-size contacts. Nat. Nanotechnol. 2, 171 (2007)

    Article  CAS  Google Scholar 

  23. J. Velev, R.F. Sabirianov, S.S. Jaswal, E.Y. Tsymbal, Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203 (2005)

    Article  CAS  Google Scholar 

  24. D. Jacob, J. Fernández-Rossier, J.J. Palacios, Anisotropic magnetoresistance in nanocontacts. Phys. Rev. B 77, 165412 (2008)

    Article  Google Scholar 

  25. V. Oboňa , J.M. de Teresa, R. Córdoba, A. Fernández-Pacheco, M.R. Ibarra, Creation of stable nanoconstrictions in metallic thin films via progressive narrowing by focused-ion-beam technique and in situ control of resistance. Micr. Eng. 86, 639 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalio Fernandez-Pacheco .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernandez-Pacheco, A. (2011). Conduction in Atomic-Sized Magnetic Metallic Constrictions Created by FIB. In: Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15801-8_4

Download citation

Publish with us

Policies and ethics