Skip to main content

Terahertz and Infrared Quantum Photodetectors

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 77))

Abstract

The importance and the application vastity of terahertz and infrared photodetectors are clear for every one working in this field. Infrared photodetectors are interesting components in optical communications, thermal imaging and sensor networking. Recently infrared photodetectors have been the focus of much attention due to its potential use in far-infrared imaging as well as room temperature operation, which is of interest from user’s point of view. Conventionally all objects radiate most of its energy in the form of infrared and terahertz waves, for observing objects and physical activity in dark conditions one must monitor the infrared spectra. It is usually customary to use the 3–5 μm infrared window in military applications, 8–15 μm window in thermal imaging and >20 μm in THz applications such as medical diagnostics. More study is done on finding proper material for detecting the infrared spectrum. However the detection of long-wavelength infrared (e.g. 10 μm) radiation requires a small gap (Eg ≈ 0.1 eV). Such small-bandgap materials are well-known to be more difficult to grow, process, and fabricate into devices than are larger bandgap semiconductors [1]. This problem is more critical in THz wavelengths in a manner that it is actually impossible to detect THz radiations via interband optical transitions. Intersubband transitions are a suitable alternative to cover the infrared and THz spectra. On these lines to remove the present problems, improve the detecting parameters and for integrating it with other optoelectronic devices, optimizing the trade-off between Responsivity and Detectivity, spectra engineering and obtaining to suitable detecting parameters at room temperature, photodetector structures are developed from bulk to quantum wells (QWIP) and dots (QDIP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Levine, B.F.: Quantum-well infrared photodetectors. J. Appl. Phys. 74, R1–R81 (1993)

    CAS  Google Scholar 

  2. Graf, M.: Design and characterization of far- and mid-infrared quantum cascade detector. Trafford Publishing, Bloomington (2007)

    Google Scholar 

  3. Koeniguer, C., Dubois, G., Gomez, A., Berger, V.: Electronic transport in quantum cascade structures at equilibrium. Phys. Rev. B. 74(23), 235325-1–235325-6 (2006)

    Google Scholar 

  4. Radovanović, J., Milanović, V., Ilkonić, Z., Indjin, D., Harrison, P.: Electron–phonon relaxation rate. J. Appl. Phys. 97, 103109-1–103109-5 (2005)

    Google Scholar 

  5. Ferreira, R., Bastard, G.: Evaluation of some scattering times for electrons in unbiased and biased signal- and multiple quantum well structures. Phys. Rev. B. 40, 1074–1086 (1989)

    Google Scholar 

  6. Ozturk, E., Sokmen, I.: Intersubband transitions in quantum wells. Appl. Phys. D. 36, 2457–2464 (2003)

    CAS  Google Scholar 

  7. Rosencher, E., Vinter, B.: Optoelectronics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  8. Beck, W.A.: Photoconductive gain and generation-recombination noise in multiple-quantum-well infrared detectors. Appl. Phys. Lett. 63, 3589–3591 (1993)

    CAS  Google Scholar 

  9. Levine, B.F., Bethea, C.G., Choi, K.K., Walker, J., Malik, R.J.: Tunneling lifetime broadening of the quantum well intersubband photoconductivity spectrum. Appl. Phys. Lett. 53, 231–233 (1988)

    CAS  Google Scholar 

  10. Suzuki, N., Iizuka, N., Kaneko, K.: Simulation of ultrafast GaN/AlN intersubband optical switches. IEICE Trans. Electron. E88–C, 342–348 (2005)

    Google Scholar 

  11. Liu, H.C.: Quantum dot infrared photodetector. Optoelectron. Rev. 11, 1–5 (2003)

    Google Scholar 

  12. Su, X., Chakrabarti, S., Bhattacharya, P., Ariyawansa, G., Unil Perera, A.G.: A resonant tunneling quantum-dot infrared photodetector. IEEE J. Quantum Electron. 41, 974–979 (2005)

    Google Scholar 

  13. Choi, K.K.: The physics of quantum well infrared photodetectors. World Scientific, Singapore (1997)

    Google Scholar 

  14. Gunapala, S.D., Bandara, S.V.: Quantum well infrared photodetector (QWIP) focal plane arrays. Semicond. Semimet. Ser. 62, 1–83 (1999)

    Google Scholar 

  15. Steiner, T. (ed.): Semiconductor Nanostructures for Optoelectronic Applications. Artech House, Inc., Boston (2004)

    Google Scholar 

  16. Koeniguer, C., Gendron, L., Berger, V.: Analysis of performances of quantum cascade detectors. In: Proceedings of SPIE, vol. 5957, pp. 595704-1–595704-9 (2005)

    Google Scholar 

  17. Sarusi, G., Carbone, A., Gunapala, S.D., Liu, H.C. (eds.): High resistance narrow band quantum cascade photodetectors. In: Proceedings of the workshop on quantum well infrared photodetectors QWIP, Castello di Pavone, Torino, Italy, pp. 13–17 (2002)

    Google Scholar 

  18. Bastard, G.: Resonant carrier capture by semiconductor QW. Phys. Rev. B 33, 1420–1423 (1986)

    Google Scholar 

  19. Brum, J.A., Weil, T., Nagle, J., Vinter, B.: Calculation of capture time of QW in graded-index separate-confinement heterostructures. Phys. Rev. B 34, 2381–2384 (1986)

    Google Scholar 

  20. Rosencher, E., Vinter, B., Luc, F., Thibaudeau, L., Bois, P., Nagle, J.: Emission and capture of electrons in multiquantum-well structures. IEEE J. Quantum Electron. 30, 2875–2888 (1994)

    CAS  Google Scholar 

  21. Liu, H.C.: Photoconductive gain mechanism of quantum-well intersubband infrared detectors. Appl. Phys. Lett. 60, 1507–1509 (1992)

    CAS  Google Scholar 

  22. Kastalsky, A.: Photovoltaic in GaAs/AlGaAs. Appl. Phys. Lett. 52, 1320–1322 (1988)

    CAS  Google Scholar 

  23. Goossen, K.W., Lyon, S.A.: Performance aspects of a QW detectors. J. Appl. Phys. 63, 5149–5153 (1988)

    Google Scholar 

  24. Schneider, H., Larkins, E.C.: Space-charge effects in photovoltaic double barrier quantum well infrared detectors. Appl. Phys. Lett. 63, 782–784 (1993)

    CAS  Google Scholar 

  25. Schonbein, C.: A GaAs/AlGaAs intersubband photodetectore operating at zero bias voltage. Appl. Phys. Lett. 68, 973–975 (1996)

    Google Scholar 

  26. Schneider, H., Koidl, P., Schönbein, C., Ehret, S., Larkins, E.C., Bihlmann, G.: Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors. Superlatt. Microstruct. 19, 347–356 (1996)

    CAS  Google Scholar 

  27. Schneider, H., Liu, H.C.: Quantum Well Infrard Photodetectors. Springer, Berlin (2007)

    Google Scholar 

  28. Schneider, H., Schönbein, C., Walther, M., Schwarz, K., Fleissner, J., Koidl, P.: Photovoltaic QWIP the four-zone. Appl. Phys. Lett. 71, 246–248 (1997)

    CAS  Google Scholar 

  29. Schneider, H., Koidl, P., Walther, M., Fleissner, J., Rehm, R., Diwo, E., Schwarz, K., Weimann, G.: Ten years of QWIP development at Fraunhofer IAF. Infrared Phys. Tech. 42, 283–289 (2001)

    Google Scholar 

  30. Berger, V.: French patent, Détecteurs à cascade quantique. National reference number 0109754 (2001)

    Google Scholar 

  31. Koehler, R., et al.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    CAS  Google Scholar 

  32. Rostami, A., Motmaen, A., Baghban, H., Rasooli Saghai, H.: Dual-color mid-infrared quantum cascade photodetector in a coupled quantum well structure. In: Proceedings of SPIE-OSA-IEEE Asia communications and photonics, vol. 7631, pp. 76310L–76310L-10 (2009)

    Google Scholar 

  33. Ariyawansa, G., Perera, A.G.U., Su, X.H., Chakrabarti, S., Bhattacharya, P.: Multi-color tunneling quantum dot infrared photodetectores operation at room temperatute. Infrared Phys. Tech. 50, 156–161 (2007)

    CAS  Google Scholar 

  34. Chamberlin, D., Robrish, P., Trutna, W., Scalari, G., Giovannini, M., Ajili, L., Faist, J., Beere, H., Ritchie, D.: Dual-wavelength THz imaging with quantum cascade lasers. Proc. SPIE 5727, 107–114 (2005)

    CAS  Google Scholar 

  35. Ariyawansa, G., Apalkov, V., Perera, A.G.U., Matsik, S.G., Huang, G., Bhattacharya, P.: Bias-selectable tricolor tunneling quantum dot infrared photodetector for atmospheric windows. Appl. Phys. Lett. 92, 111104-1–111104-3 (2008)

    Google Scholar 

  36. Kock, A., Gornik, E., Abstreiter, G., Bohm, G., Walther, M., Weimann, G.: Double wavelength selective GaAs/AlGaAs infrared detector device. Appl. Phys. Lett. 60, 2011–2013 (1992)

    Google Scholar 

  37. Gravé, I., Shakouri, A., Kruze, N., Yariv, A.: Voltage-controlled tunable GaAs/AlGaAs multistack quantum well infrared photodetector. Appl. Phys. Lett. 60, 2362–2364 (1992)

    Google Scholar 

  38. Liu, H.C., Li, J., Thompson, J.R., Wasilewski, Z.R., Buchanan, M., Simmons, J.G.: Multicolor voltage-tunable quantum-well infrared photodetector. IEEE Electron Device Lett. 14, 566–568 (1993)

    CAS  Google Scholar 

  39. Tidrow, M.Z., Chiang, J.C., Li, S.S., Bacher, K.: A high strain two-stack two-color quantum well infrared photodetector. Appl. Phys. Lett. 70, 859–861 (1997)

    CAS  Google Scholar 

  40. Tsai, K.L., Chang, K.H., Lee, C.P., Huang, K.F., Tsang, J.S., Chen, H.R.: Two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Appl. Phys. Lett. 62, 3504–3506 (1993)

    CAS  Google Scholar 

  41. Wang, Y.H., Chiang, J.C., Li, S.S., Ho, P.: A GaAs/AlAs/AlGaAs and GaAs/AlGaAs stacked quantum well infrared photodetector for 3–5 and 8–14 μm detection. J. Appl. Phys. 76, 2538–2540 (1994)

    CAS  Google Scholar 

  42. Zhang, Y., Jiang, D.S., Xia, J.B., Cui, L.Q., Song, C.Y., Zhou, Z.Q., Ge, W.K.: A voltage-controlled tunable two-color infrared photodetector using GaAs/AlAs/GaAlAs and GaAs/GaAlAs stacked multiquantum wells. Appl. Phys. Lett. 68, 2114–2116 (1996)

    CAS  Google Scholar 

  43. Beck, W.A., Faska, T.S.: Current status of quantum well focal plane arrays. In: Proceedings of the SPIE, infrared technology and applications XXII, vol. 2744, pp. 193–206 (1996)

    Google Scholar 

  44. Berger, V., Vodjdani, N., Bois, P., Vinter, B., Delaitre, S.: Switchable bicolor infrared detector using an electron transfer infrared modulator. Appl. Phys. Lett. 61, 1898–1900 (1992)

    CAS  Google Scholar 

  45. Martinet, E., Rosencher, E., Luc, F., Bois, P., Costard, E., Delaitre, S.: Switchable bicolor (5.5–9.0 μm) infrared detector using asymmetric GaAs/AlGaAs multiquantum well. Appl. Phys. Lett. 61, 246–248 (1992)

    CAS  Google Scholar 

  46. Chiang, J.C., Li, S.S., Tidrow, M.Z., Ho, P., Tsai, M., Lee, C.P.: A voltage-tunable multicolor triple-coupled InGAAs/GaAs/AlGaAs quantum-well infrared photodetector for 8–12 μm detection. Appl. Phys. Lett. 69, 2412–2414 (1996)

    CAS  Google Scholar 

  47. Schneider, H., Liu, H.C., Winnerl, S., Song, C.Y., Drachenko, O., Walther, M., Faist, J., Helm, M.: Quadratic detection with two-photon quantum well infrared photodetectors. Infrared Phys. Tech. 52, 419–423 (2009)

    CAS  Google Scholar 

  48. Schneider, H., Liu, H.C., Winnerl, S., Song, C.Y., Walther, M., Helm, M.: Terahertz two-photon quantum well infrared photodetector. Opt. Express 17(15), 12279–12284 (2009)

    CAS  Google Scholar 

  49. Rosencher, E., Fiore, A., Vinter, B., Berger, V., Bois, P.h., Nagle, J.: Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996)

    CAS  Google Scholar 

  50. Schneider, H., Maier, T., Liu, H.C., Walther, M., Koidl, P.: Ultra-sensitive femtosecond two-photon detector with resonantly enhanced nonlinear absorption. Opt. Lett. 30, 287–289 (2005)

    Google Scholar 

  51. Maier, T., Schneider, H., Walther, M., Koidl, P., Liu, H.C.: Resonant two-photon photoemission in quantum well infrared photodetectors. Appl. Phys. Lett 84, 5162–5164 (2004)

    CAS  Google Scholar 

  52. Schneider, H., Liu, H.C.: Quantum Well Infrared Photodetectors: Physics and Applications. Springer, Berlin (2006)

    Google Scholar 

  53. Cristea, P., Fedoryshyn, Y., Holzman, J.F., Robin, F., Jäckel, H., Müller, E., Faist, J.: Tuning the intersubband absorption in strained AlAsSb/InGaAs quantum wells towards the telecommunications wavelength range. J. Appl. Phys. 100, 116104-1–116104-3 (2006)

    Google Scholar 

  54. Luo, H., Liu, H.C., Song, C.Y., Wasilewski, Z.R.: Background-limited terahertz quantum-well photodetector. Appl. Phys. Lett. 86, 231103-1–231103-3 (2005)

    Google Scholar 

  55. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)

    CAS  Google Scholar 

  56. Liu, H.C., Song, C.Y., Wasilewski, Z.R., Gupta, J.A., Buchanan, M.: Fano resonance mediated by intersubband-phonon coupling. Appl. Phys. Lett. 91, 131121-1–131121-3 (2007)

    Google Scholar 

  57. Schneider, H., Drachenko, O., Winnerl, S., Helm, M., Walther, M.: Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum-well infrared photodetectors. Appl. Phys. Lett. 89, 133508-1–133508-3 (2006)

    Google Scholar 

  58. Stier, O., Grundmann, M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phys. Rev. B 59, 5688–5701 (1999)

    CAS  Google Scholar 

  59. Sun, S.J., Chang, Y.C.: Modeling self-assembled quantum dots by the effective bond-orbital method. Phys. Rev. B 62, 13631–13640 (2000)

    CAS  Google Scholar 

  60. Ryzhii, V.: Negative differential photoconductivity in quantum-dot infrared photodetectors. Appl. Phys. Lett. 78, 3346–3348 (2001)

    CAS  Google Scholar 

  61. Boucaud, P., Sauvage, S.: Infrared photodetection with semiconductor self-assembled quantum dots. C. R. Phys. 4, 1133–1154 (2003)

    CAS  Google Scholar 

  62. Xu, S.J., et al.: Characteristics of InGaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 3153–3155 (1998)

    CAS  Google Scholar 

  63. Blick, R.H., Haug, R.J., Weis, J., Pfannkuche, D., Klitzing, K.V., Eberl, K.: Single-electron tunneling through a double quantum dot: the artificial molecule. Phys. Rev. B 53, 7899–7902 (1996)

    CAS  Google Scholar 

  64. Sikorski, C., Merkt, U.: Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164–2167 (1989)

    CAS  Google Scholar 

  65. Demel, T., Heitmann, D., Grambow, P., Ploog, K.: Nonlocal dynamic response and level crossings in quantum-dot structures. Phys. Rev. Lett. 64, 788–791 (1990)

    CAS  Google Scholar 

  66. Stranski, I.N., Krastanow, L.: Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitzungsber. Akad. Wiss. Wien, Math. Naturwiss. K1 Abt. 2B 146, 797–810 (1938)

    CAS  Google Scholar 

  67. Goldstein, L., Glas, F., Marzin, J.Y., Charasse, M.N., Le Roux, G.: Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985)

    CAS  Google Scholar 

  68. Mo, Y.W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G.: Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020–1023 (1990)

    CAS  Google Scholar 

  69. Gérard, J.M., Marzin, J.Y., Zimmermann, G., Ponchet, A., Cabrol, O., Barrier, D., Jusserand, B., Sermage, B.: InAs/GaAs quantum boxes obtained by self-organized growth: intrinsic electronic properties and applications. Solid State Electron. 40, 807–814 (1996)

    Google Scholar 

  70. Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)

    CAS  Google Scholar 

  71. Lee, H., Lowe-Webb, R., Yang, W., Sercel, P.C.: Determination of the shape of self-organized InAs/GaAs quantum dots by reflection high energy electron diffraction. Appl. Phys. Lett. 72, 812–814 (1998)

    CAS  Google Scholar 

  72. Haller, E.E.: Advanced far-infrared detectors. Infrared Phys. 35, 127–146 (1994)

    CAS  Google Scholar 

  73. Suzuki, M., Tonouchi, M.: Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses. Appl. Phys. Lett. 86, 163504-1–163504-3 (2005)

    Google Scholar 

  74. Rinzan, M.B.M., Perera, A.G.U., Matsik, S.G., Liu, H.C., Wasilewski, Z., Buchanan, M.: AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold. Appl. Phys. Lett. 86, 071112-1–071112-3 (2005)

    Google Scholar 

  75. Lü, J., Shur, M.S.: Terahertz detection by high-electron-mobility transistor: enhancement by drain bias. Appl. Phys. Lett. 78, 2587–2588 (2001)

    Google Scholar 

  76. Liu, H.C., Song, C.Y., Spring Thorpe, A.J., Cao, J.C.: Terahertz quantum-well photodetector. Appl. Phys. Lett. 84, 4068–4070 (2004)

    CAS  Google Scholar 

  77. Phillips, J., Bhattacharya, P., Kennerly, S.W., Beekman, D.W., Dutta, M.: Self-assembled InAs–GaAs quantum-dot intersubband detectors. IEEE J. Quantum Electron. 35, 936–943 (1999)

    CAS  Google Scholar 

  78. Kim, E., Madhukar, A., Ye, Z., Campbell, J.C.: High detectivity InAs quantum dot infrared photodetectors. Appl. Phys. Lett. 84, 3277–3279 (2004)

    CAS  Google Scholar 

  79. Krishna, S., Raghavan, S., Von Winckel, G., Stintz, A., Ariyawansa, G., Matsik, S.G., Perera, A.G.U.: Three-color (λp1 3.8 μm, λp2 8.5 μm, and λp3 23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector. Appl. Phys. Lett. 83, 2745–2747 (2003)

    CAS  Google Scholar 

  80. Chakrabarti, S., Stiff-Roberts, A.D., Bhattacharya, P., Gunapala, S.D., Bandara, S., Rafol, S.B., Kennerly, S.W.: High-temperature operation of InAs/GaAs quantum dot infrared photodetectors with large responsivity and detectivity. IEEE Photonics Technol. Lett. 16, 1361–1363 (2004)

    CAS  Google Scholar 

  81. Berryman, K.W., Lyon, S.A., Segev, M.: Mid-infrared photoconductivity in InAs quantum dots. Appl. Phys. Lett. 70, 1861–1863 (1997)

    CAS  Google Scholar 

  82. Liu, J.L., Wu, W.G., Balandin, A., Jin, G.L., Wang, K.L.: Intersubband absorption in boron-doped multiple Ge quantum dots. Appl. Phys. Lett. 74, 185–187 (1999)

    CAS  Google Scholar 

  83. Chua, Y.C., Decuir, E.A., Passmore, B.S., Sharif, K.H., Manasreha, M.O., Wang, Z.M., et al.: Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors. Appl. Phys. Lett. 85, 1003–1005 (2004)

    CAS  Google Scholar 

  84. Chakrabarti, S., Bhattacharya, P., Stiff-Roberts, A.D., Lin, Y.Y., Singh, J., Lei, Y., et al.: Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection. J. Phys. D Appl.Phys. 36, 1794–1797 (2003)

    CAS  Google Scholar 

  85. Barseghyan, M.G., Kirakosyan, A.A.: Light absorption by a two-dimensional quantum dot superlattice. Physica E 27, 474–480 (2005)

    CAS  Google Scholar 

  86. Etteh, N.E.I., Harrison, P.: Carrier scattering approach to the origins of dark current in mid and far-infrared (terahertz) quantum-well intersubband photodetectors (QWLPs). IEEE J. Quantum Electron. 37, 672–675 (2001)

    CAS  Google Scholar 

  87. Phillips, J., Kamath, K., Bhattacharrya, P.: Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors. Appl. Phys. Lett. 72, 3509–3511 (1998)

    CAS  Google Scholar 

  88. Kim, S., Mohseni, H., Erdtmann, M., Michel, E., Jelen, C., Razeghi, M.: Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector. Appl. Phys. Lett. 73, 963–965 (1998)

    CAS  Google Scholar 

  89. Pan, D., Towe, E., Kennerly, S.: A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector. Appl. Phys. Lett. 75, 2719–2721 (1999)

    CAS  Google Scholar 

  90. Kim, J.W., Oh, J.E., Hong, S.C., Park, C.H., Yoo, T.K.: Room temperature far infrared (8 ~ 10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity. IEEE Electron. Device Lett. 21, 329–331 (2000)

    CAS  Google Scholar 

  91. Liu, H.C., Gao, M., McCaffrey, J., Wasilewski, Z.R., Fafard, S.: Quantum dot infrared photodetectors. Appl. Phys. Lett. 78, 79–81 (2001)

    CAS  Google Scholar 

  92. Stiff, A.D., Krishna, S., Bhattacharya, P., Kennerly, S.W.: Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector. IEEE J. Quantum Electron. 37, 1412–1419 (2001)

    CAS  Google Scholar 

  93. Stiff, A.D., Krishna, S., Bhattacharya, P., Kennerly, S.: High-detectivity, normal-incidence, mid-infrared (λ ~ 4 μm) InAs/GaAs quantum-dot detector operating at 150 K. Appl. Phys. Lett. 79, 421–423 (2001)

    CAS  Google Scholar 

  94. Ye, Z., Campbell, J.C., Chen, Z., Kim, E., Madhukar, A.: Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity. IEEE J. Quantum Electron. 38, 1234–1237 (2002)

    CAS  Google Scholar 

  95. Ye, Z., Campbell, J.C., Chen, Z., Kim, E.T., Madhukar, A.: InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain–relief cap layears. J. Appl. Phys. 92, 7462–7468 (2002)

    CAS  Google Scholar 

  96. Lee, S.W., Hirakawa, K., Shimada, Y.: Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures. Appl. Phys. Lett. 75, 1428–1430 (1999)

    CAS  Google Scholar 

  97. Chu, L., Zrenner, A., Bichler, M., Abstreiter, G.: Quantum-dot infrared photodetector with lateral carrier transport. Appl. Phys. Lett. 79, 2249–2251 (2001)

    CAS  Google Scholar 

  98. Hsu, B.C., Chang, S.T., Chen, T.C., Kuo, P.S., Chen, P.S., Pei, Z., et al.: A high efficient 820 nm MOS Ge quantum dot photodetector. IEEE Electron. Device Lett. 24, 318–320 (2003)

    CAS  Google Scholar 

  99. Su, X.H., Yang, J., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: Terahertz detection with tunneling quantum dot intersublevel photodetector. Appl. Phys. Lett. 89, 031117-1–031117-3 (2006)

    Google Scholar 

  100. Esaev, D.G., Rinzan, M.B.M., Matsik, S.G., Perera, A.G.U., Liu, H.C., Zvonkov, B.N., Gavrilenko, V.I., Belyanin, A.A.: High performance single emitter homojunction interfacial workfunction far infrared detectors. J. Appl. Phys. 95, 512–519 (2004)

    CAS  Google Scholar 

  101. Hofer, S., Hirner, H., Bratschitsch, R., Strasser, G., Unterrainer, K.: Photoconductive response of InAs/GaAs quantum dot stacks. Physica E 13, 190–193 (2002)

    CAS  Google Scholar 

  102. Grundmann, M., Weber, A., Goede, K., Ustinov, V.M., Zhukov, A.E., Ledentsov, N.N., Kop’ev, P.S., Alferov, Z.I.: Midinfrared emission from near-infrared quantum-dot lasers. Appl. Phys. Lett. 77, 4–6 (2000)

    CAS  Google Scholar 

  103. Wingreen, N.S., StaLord, C.A.: Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. J. Quantum Electron. 33, 1170–1173 (1997)

    CAS  Google Scholar 

  104. Bayer, M., Hawrylak, P., Hinzer, K., Fafard, S., Korkusinski, M., Wasilewski, R., Stern, O., Forchel, A.: Coupling and entangling of quantum states in quantum dot molecules. Science. 291, 451–453 (2001)

    CAS  Google Scholar 

  105. Bastard, G.: Theoretical investigations of superlattice band structure in the envelope-function approximation. Phys. Rev. B 25, 7584–7597 (1982)

    CAS  Google Scholar 

  106. Pan, D., Towe, E., Kennerly, S.: Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 1937–1939 (1998)

    CAS  Google Scholar 

  107. Chu, L., Zrenner, A., Bohm, G., Abstreiter, G.: Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots. Appl. Phys. Lett. 75, 3599–3601 (1999)

    CAS  Google Scholar 

  108. Yu, L.S., Li, S.S.: A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector. Appl. Phys. Lett. 59, 1332–1334 (1991)

    Google Scholar 

  109. Yu, L.S., Wang, H., Li, S.S., Ho, P.: Low dark current step-bound-to-miniband transition InGaAs/GaAs/AlGaAs multiquantum-well infrared detector. Appl. Phys. Lett. 60, 992–994 (1992)

    CAS  Google Scholar 

  110. Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: High-power terahertz radiation from relativistic electrons. Nat. 420, 153–156 (2002)

    CAS  Google Scholar 

  111. Sherwin, M.: Terahertz power. Nat. 420, 131–133 (2002)

    CAS  Google Scholar 

  112. Mittleman, D.M., Jacobsen, R.H., Nuss, M.C.: T-Ray imaging’. IEEE J. Select. Topics. Quantum Eletronics. 2, 679–692 (1996)

    CAS  Google Scholar 

  113. Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Tran. Microwave. Theory and Techniques 52, 2438–2447 (2004)

    Google Scholar 

  114. Siegel, P.H.: THz applications for outer and inner space. In: 17th International Zurich Symposium on Electromagnetic Compatibility, 1–4 (2006)

    Google Scholar 

  115. Dai, J.H., Lee, J.H., Lee, S.C.: Annealing effect on the formation of In(Ga)As quantum rings from InAs quantum dots. IEEE Photon. Technol. Lett. 20, 165–167 (2008)

    CAS  Google Scholar 

  116. Lee, J.H., Dai, I.H., Chang, Y.T., Chan, C.F., Lee, S.C.: In(Ga)As quantum ring terahertz photodetector. Solid State Devices and Materials (SSDM 2008). Ibaraki, Japan (2008)

    Google Scholar 

  117. Kochman, B., Stiff-Roberts, A.D., Chakrabarti, S., Phillips, J.D., Krishna, S., Singh, J., et al.: Absorption, carrier lifetime, and gain in InAs–GaAs quantum-dot infrared photodetectors. IEEE J. Quantum Electron. 39, 459–467 (2003)

    CAS  Google Scholar 

  118. Ryzhii, V., Khmyrova, I., Ryzhii, M., Mitin, V.: Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors. Semicond. Sci. Technol. 19, 8–16 (2004)

    CAS  Google Scholar 

  119. Rostami, A., Rasooli Saghai, H.: A novel proposal for ultra-high optical nonlinearity in GaN/AlGaN spherical centered defect quantum dot (SCDQD). Microelectron. J. 38, 342–351 (2007)

    Google Scholar 

  120. Rostami, A., Rasooli Saghai, H., Sadoogi, N., Baghban, H.: Proposal for ultra-high performance infrared quantum dot. Opt. Express 16, 2752–2763 (2008)

    CAS  Google Scholar 

  121. Rostami, A., Rasooli Saghai, H., Baghban, H.: A proposal for enhancement of absorption coefficient and electroabsorption properties in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Phys. B 403, 2789–2796 (2008)

    CAS  Google Scholar 

  122. Rostami, A., Rasooli Saghai, H., Baghban, H.: A proposal for enhancement of optical nonlinearity in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Solid State Electron. 52, 1075–1081 (2008)

    CAS  Google Scholar 

  123. Sadoogi, N., Rasooli Saghai, H., Rostami, A., Ghafoori Fard, H.: Electron transport in array of centered defect quantum dots. Phys. E 41, 269–277 (2008)

    Google Scholar 

  124. Harrison, P., Gadir, M.A., Etteh, N.E.I., Soref, R.A.: The physics of THz QWIPs. In: Proceedings of the 9th international conference on THz electronics, the 10th IEEE international conference on terahertz electronics (2002)

    Google Scholar 

  125. Rasooli Saghai, H., Sadoogi, N., Rostami, A., Baghban, H.: Ultra-high detectivity room temperature THZ IR-photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD). Optic. Comm. 282, 3499–3508 (2009)

    Google Scholar 

  126. Rostami, A., Rasooli Saghai, H., Baghban Asghari Nejad, H., Sadoogi, N.: Tailoring of quantum dot basic cell towards high detectivity THz-IR photodetector. In: Luo, Y., Buus, J., Koyama, F., Lo, Y.-H. (eds.) Optoelectronic Materials and Devices III. Proc. of SPIE, vol. 7135, pp. 71352Z-1–71352Z-9 (2008)

    Google Scholar 

  127. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Harcourt Academic Press, San Diego (2001)

    Google Scholar 

  128. Peyghambarian, N., Koch, S.W., Mysyrowicz, A.: Introduction to Semiconductor Optics. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  129. Basu, P.K.: Theory of Optical Processes in Semiconductors. Clarendon Press, Oxford (1997)

    Google Scholar 

  130. Asgari, A., Kalafi, M., Faraone, L.: The effects of GaN capping layer thickness on two-dimensional electron mobility in GaN/AlGaN/GaN heterostructures. Phys. E 25, 431–437 (2005)

    CAS  Google Scholar 

  131. Guo, K.X., Yu, Y.B.: Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots. Chin. J. Phys. 43, 932–940 (2005)

    CAS  Google Scholar 

  132. Liu, J., Bai, J., Xiong, G.: Studies of the second-order nonlinear optical susceptibilities of GaN/AlGaN quantum well. Phys. E 23, 70–74 (2004)

    Google Scholar 

  133. Adawi, A.M., Zibik, E.A., Wilson, L.R., Lemaitre, A., Cockburn, J.W., Skolnick, M.S., Hopkinson, M., et al.: Strong in-plane polarised intersublevel absorption in vertically aligned InGaAs/GaAs quantum dots. Appl. Phys. Lett. 82, 3415–3417 (2003)

    CAS  Google Scholar 

  134. Kerr, W.E., Pancholi, A., Stoleru, V.G.: Quantum dot molecules: a potential pathway towards terahertz devices. Phys. E. 35, 139–145 (2006)

    CAS  Google Scholar 

  135. Paiella, R.: Intersubband Transitions in Quantum Structures. McGraw-Hill, NY (2006)

    Google Scholar 

  136. Zyaei, M., Rasooli Saghai, H., Abbasian, K., Rostami, A.: Long wavelength infrared photodetector design based on electromagnetically induced transparency. Optic. Comm. 281, 3739–3747 (2008)

    CAS  Google Scholar 

  137. Rostami, A., Zyaei, M., Rasooli Saghi, H.: Room temperature terahertz quantum well infrared photodetector based on electromagnetically induced transparency (EIT). In: Proceedings of the IASTED International Conference, Greece Nanotechnology and Application (NANA), vol. 615-050, pp. 95–100 (2008)

    Google Scholar 

  138. Rostami, A., Zyaei, M., Rasooli Saghai, H., Sharifi, F.J.: Terahertz asymmetric quantum well infrared photodetector design based on electromagnetically induced transparency. In: Optomechatronic technologies, SPIE, vol. 7266, pp. 72660Z-1–72660Z-9 (2008)

    Google Scholar 

  139. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)

    CAS  Google Scholar 

  140. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  141. Phillips, C.C., Paspalakis, E., Serapiglia, G.B., Sirtori, C., Vodopyanov, K.L.: Observation of electromagnetically induced transparency and measurements of subband dynamics in a semiconductor quantum well. Phys. E 7, 166–173 (2000)

    CAS  Google Scholar 

  142. Faist, J., Capasso, F., Sirtori, C., West, K., Pfeiffer, L.N.: Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 390, 589–591 (1997)

    CAS  Google Scholar 

  143. Schmidt, H., Campman, K.L., Gossard, A.C., Imamoglu, A.: Tunneling induced transparency: fano interference in intersubband transitions. Appl. Phys Lett. 70, 3455–3457 (1997)

    CAS  Google Scholar 

  144. Frogley, M.D., Dynes, J.F., Beck, M., Faist, J., Phillips, C.C.: Gain without inversion in semiconductor nanostructures. Nat. Mater. 5, 175–178 (2006)

    CAS  Google Scholar 

  145. Schmidt, H., Imamoglu, A.: Nonlinear optical devices based on a transparency in semiconductor intersubband transitions. Optic. Commun. 131, 333–338 (1996)

    CAS  Google Scholar 

  146. Lee, C.R., Li, Y.C., Men, F.K., Pao, C.H., Tsai, Y.C., Wang, J.F.: Model for an inversionless two-color laser. Appl. Phys. Lett. 86, 201112-1–201112-3 (2004)

    Google Scholar 

  147. Dyns, J.F., Frogley, M.D., Rodger, J., Phillips, C.C.: Optically mediated coherent population trapping in asymmetric semiconductor quantum wells. Phys. Rev. B 72, 085323-1–085323-7 (2005)

    Google Scholar 

  148. Giorgetta, F.R., Baumann, A.E., Hofstetter, D., Manz, C., Yang, Q., Köhler, K., Graf, M.: InGaAs/AlAsSb quantum cascade detectors operating in the near infrared. Appl. Phys. Lett. 91, 111115-1–111115-3 (2007)

    Google Scholar 

  149. Yelin, S.F., Hemmer, P.R.: Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection. Phys. Rev. A 66, 013803-1–013803-5 (2002)

    Google Scholar 

  150. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced trans

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Rasooli, H., Baghban, H. (2011). Terahertz and Infrared Quantum Photodetectors. In: Terahertz Technology. Lecture Notes in Electrical Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15793-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15793-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15792-9

  • Online ISBN: 978-3-642-15793-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics