Skip to main content

Realisation of Various EBG Structures

  • Conference paper
Information and Communication Technologies (ICT 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 101))

  • 930 Accesses

Abstract

Patch antenna arrays are used extensively due to their low profile structure, light weight and low cost. Patch antenna arrays have been widely used for a variety of wireless applications. However, a major drawback of this type of antenna arrays is mutual coupling and bandwidth. Mutual Coupling losses can be reduced effectively by placing Electromagnetic band gap (EBG) structures, also called photonic band gap (PBG) structures. In this paper, different types of Electromagnetic Band Gap (EBG) structures are proposed to be placed in between the patch antenna arrays to reduce the mutual coupling loss. These EBG structures are designed as small as possible because of system compactness. Hence the design of novel compact hybrid EBG structures are more challenging for wireless applications. In this paper various hybrid EBG structures showed with and without vias are compared with the defined antenna parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Book on, Electromagnetic Band Gap Structures in Antenna Engineering, Fan Yang University of Mississippi Yahya Rahmat-SAMII University of California at Los Angeles

    Google Scholar 

  2. Amman, M.: Design of Rectangular Microstrip Patch Antennas for the 2.4 GHz Band. Applied Microwave &Wireless, 24–34 (November/December 1997)

    Google Scholar 

  3. Garg, R., Bhartia, P., Bahl, I., Ittipibon, A.: Microstrip Antenna Design Handbook. Artech House, Boston (2001)

    Google Scholar 

  4. Azad, M.Z., Ali, M.: Novel wide band directional dipole antenna on a mushroom like EBG structure. IEEE Trans. Antennas and Propaga 56(5) (May 2008)

    Google Scholar 

  5. Yang, L., Fan, M., She, F.C.J., Feng, Z.: A novel compact EBG structure and its application for Microwave circuits. IEEE Trans. Microw. Theory Tech. 53(1) (January 2005)

    Google Scholar 

  6. Antenna Theory by Constantine Balanies Handbook, II edn. Wiley Publications, Chichester

    Google Scholar 

  7. Elsheakh, D.N.: Hawaii Center for Advanced Communications University of Hawaii Honolulu, USA H. A. Elsadek and E. A. Abdallah Electronics Research Institute Cairo, Egypt M. F. Iskander Hawaii Center for Advanced Communications University of Hawaii Honolulu, USA H. ElhenawyFaculty of Engineering Ain Shams University Cairo, Egypt, ‘Ultra-wideband and Miniaturization of the Monopole Patch Antenna(MMPA) with modified plane for wireless applications’, Progres. Electromagnetics Research Letters 10, 171–184 (2009)

    Google Scholar 

  8. Rajo-Iglesias, E., Quevedo-Teruel, O., Inclan-Sanchez, L.: Mutual coupling reduction in patch antenna arrays by using a Planar EBG structure and a multilayer dielectric substrate. IEEE Trans., Antennas and Propaga. 56(6) (June 2008)

    Google Scholar 

  9. Amman, M.: Design of Rectangular Microstrip Patch Antennas for the 2.4 GHz Band. Applied Microwave &Wireless, 24–34 (November/December 2008)

    Google Scholar 

  10. Yang, A.A.L., Fan, M., Feng, Z.: A Spiral Electromagnetic Bandgap (EBG) Structure and its Application in Microstrip. State Key Lab on Microwave & Digital Communications (2008)

    Google Scholar 

  11. Liang, J., David Yang, H.Y.: Microstrip Patch Antennas on Tunable Electromagnetic Band-Gap Substrates. IEEE Transaction on Antenna and Propagation (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhuvaneswari, B., Malathi, K. (2010). Realisation of Various EBG Structures. In: Das, V.V., Vijaykumar, R. (eds) Information and Communication Technologies. ICT 2010. Communications in Computer and Information Science, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15766-0_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15766-0_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15765-3

  • Online ISBN: 978-3-642-15766-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics