Advertisement

Characterization of Mixing in Food Extrusion and Emulsification Processes by Using CFD

  • M. Azad EminEmail author
  • Karsten Köhler
  • Marc Schlender
  • Heike P. Schuchmann
Conference paper

Abstract

In this contribution, local flow of complex food matrices in an extrusion (i.e. twin screw extruder) and high-pressure homogenization processes (i.e. in micro-structured nozzles) were simulated by ANSYS POLYFLOW® and ANSYS FLUENT® respectively. In extrusion process, the efficiency of dispersive mixing of food-grade triglycerides of Newtonian behaviour in rheologically complex plasticized starch matrices was evaluated. Simulation results were validated quantitatively by experimental data. Furthermore, in order to understand the local mixing behaviour and its influence on the local temperature distribution within the homogenization nozzle, the flow conditions in the simultaneous Emulsification and Mixing (SEM)-nozzle were simulated by the average Navier-Stokes equations using the RNG-k-e turbulence model. Based on the results, the kinetics of the cooling effect, which can significantly reduce the coalescence of droplets, could be estimated.

Keywords

Simple Shear Capillary Number Droplet Size Distribution Screw Speed Extrusion Cooking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guy, R. (ed.) (2001). Extrusion cooking, CRC Press, Boca Raton, and Woodhead Publishing Ltd., Cambridge. Google Scholar
  2. 2.
    Mercier, C., Linko, P., Harper, J.M., (eds) (1989). Extrusion cooking. American Association of Cereal Chemists Inc., St. Paul, Minn. Google Scholar
  3. 3.
    Mcclements, D.J., Decker, Y., Weiss, J. (2007). Emulsion based delivery systems for lipophilic bioactive components. Concise reviews in food science, 72(8), 109–123. Google Scholar
  4. 4.
    Horn, D., Rieger, J. (2001). Organic Nanoparticles in the Aqueous Phase - Theory, Experiment, and Use. Angew. Chem. Int. Ed., 40, 4330–4361. CrossRefGoogle Scholar
  5. 5.
    Ribeiro, H.S., Schuchmann, H.P., Engel, R., Briviba, K., Walz, E. (2009). Encapsulation of Carotenoids and Vitamins. In: Encapsulation Technologies for Food Active Ingredients and Food Processing. Eds.: N.J. Zuidam, V.A. Nedović. Springer, New York, Chapter 8. Google Scholar
  6. 6.
    McClements, D.J. (2005). Food Emulsions: principles, practice and techniques. 2nd ed. Boca Raton, Fla: CRC Press. Google Scholar
  7. 7.
    Walstra, P. (1983). Encyclopedia of emulsion technology, Becher, P., Marcel Dekker Inc., New York. Google Scholar
  8. 8.
    Van den Einde, R.M. (2004). Molecular modification of starch during thermomechanical treatment. Dissertation, Wageningen University, The Netherlands. Google Scholar
  9. 9.
    Grace, H.P. (1982). Dispersion phenomena in high viscosity immiscible fluid systems and applications of static mixers as dispersion device in such systems. Chemical Engineering Communications, 14, 225–277. CrossRefGoogle Scholar
  10. 10.
    Elmendorp, J.J. (1986). A study on polymer blending microrheology. Polym. Eng. Sci., 26, 418. CrossRefGoogle Scholar
  11. 11.
    Elemans, P.H.M., Bos, H.L., Janssen, J.M.H., Meijer, H.E.H. (1993). Transient phenomena in dispersive mixing. Chemical Engineering Sc., 48, 267. CrossRefGoogle Scholar
  12. 12.
    Janssen, J.M.H. (1993). Dynamics of liquid-liquid mixing, Dissertation, Eindhoven University of Technology, The Netherlands. Google Scholar
  13. 13.
    De Bruijn, R.A. (1989). Deformation and break-up of drops in simple shear flow. PhD Thesis. Eindhoven University of Technology, The Netherlands. Google Scholar
  14. 14.
    Hinch, E.J., Acrivos, A. (1980). Long slender drops in a simple shear flow. J. Fluid Mech., 98, 305–328. zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sibillo, V., Simeno, M., Guido, S. (2004). Break-up of a Newtonian drop in a viscoelastic matrix under simple shear flow. Rheol. Acta, 43, 449–456. CrossRefGoogle Scholar
  16. 16.
    Yue, P., Feng, J.J., Liu, C., Shen, J. (2005). Transient drop deformation upon startup of shear in viscoelastic fluids. Phys. Fluids, 17. Google Scholar
  17. 17.
    Verhulst, K., Cardinales, R., Moldenaers, P., Afkhami, S., Renardy, Y. (2009). Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 2: Dynamics. Non-Newtonian Fluid Mech., 156, 44–57. CrossRefGoogle Scholar
  18. 18.
    Manas-Zloczower, I., Cheng, J.J. (1990). Flow field characterization in a banburry mixer. Intern. Polymer Processing, 5(3), 178–183. Google Scholar
  19. 19.
    Ishikawa, T., Amano, T., Kihara, S., Funatsu, K. (2001). 3-D non-isothermal flow field analysis and mixing performance evaluation of kneading blocks in a co-rotating twin screw extruder. Polym. Eng. Sci., 41, 840. CrossRefGoogle Scholar
  20. 20.
    Avalosse, T. (1996). Macromol. Symp. 112, p. 91. Google Scholar
  21. 21.
    Bertrand, F., Tanguy, P.A., Thibault, F. (1997). A three-dimensional fictitious domain method for incompressible fluid flow problems. Intern. J. for numerical methods in fluids. 25(6), 719–736. zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Valette, R., Coupez, T., David, C., Vergnes, B. (2009). A Direct 3D Numerical Simulation Code for Extrusion and Mixing Processes. Intern. Polymer Processing, 24(2), 141–147. CrossRefGoogle Scholar
  23. 23.
    Avalosse, T., Rubin, Y. (2000). Analysis of mixing in corotating twin-screw extruders through numerical simulation. Intern. Polymer Processing, 15, 117–123. Google Scholar
  24. 24.
    Alsteens, B., Legat, V., Avalosse, T. (2004). Parametric study of the mixing efficiency in a kneading block section of a twin-screw extruder. Intern. Polymer Processing, 19(3), 207–217. Google Scholar
  25. 25.
    Huneault, M.A., Shi, Z.H., Utracki, L.A. (1995). Development of polymer blend morphology during compounding in a twin-screw extruder. Part IV: A new computational model with coalescence. Poly. Eng. Sci., 35(1), 115–127. CrossRefGoogle Scholar
  26. 26.
    Potente, H., Bastian, M., Flecke, J. (1999). Design of a compounding extruder by means of the SIGMA simulation software. Adv. Polymer Tech., 18(2), 147–170. CrossRefGoogle Scholar
  27. 27.
    DeRoussel, P., Khakhar, D.V., Ottino, J.M. (2001). Mixing of viscous immiscible liquids. Part 1: Computational models for strong-weak and continuous flow systems. Chemical Engineering Sc., 56, 5511–5529. CrossRefGoogle Scholar
  28. 28.
    Schuchmann, H.P. (2008). Extrusion zur Gestaltung von Lebensmittelstrukturen. Chemie Ingenieur Technik, 80 (8), 1097–1106. (DOI:  10.1002/cite.200800065). CrossRefGoogle Scholar
  29. 29.
    Köhler, K., Aguilar, F.A., Hensel, A., Schubert, K., Schubert, H., Schuchmann, H.P. (2007). Design of a Microstructured System for Homogenization of Dairy Products with High Fat Content. Chemical Engineering & Technology. 30 (11) 1590–159. (DOI:  10.1002/ceat.200700266). CrossRefGoogle Scholar
  30. 30.
    Stang, M. (1998). Zerkleinern und Stabilisieren von Tropfen beim mechanischen Emulgieren. Dissertation, Universität Karlsruhe (TH). Google Scholar
  31. 31.
    Aguilar, F.A., Köhler, K., Schubert, H., Schuchmann, H.P. (2008). Herstellen von Emulsionen in einfachen und modifizierten Lochblenden: Einfluss der Geometrie auf die Effizienz der Zerkleinerung und Folgen für die Maßtabsvergrößerung. Chemie Ingenieur Technik. 80 (5) 607–613. CrossRefGoogle Scholar
  32. 32.
    Patent: Schuchmann, H.P., Köhler, Karsten (2009). Verfahren zur Herstellung einer Dispersion und Vorrichtung hierzu. Pat. nr. DE102009009060. Google Scholar
  33. 33.
    Schubert, H. (2005). Emulgiertechnik, Behr’s Verlag Hamburg. Google Scholar
  34. 34.
    Tesch, S., Freudig, B., Schubert, H. (2003). Production of emulsions in high-pressure homogenizers - Part I: Disruption and stabilization of droplets. Chemical Engineering & Technology. 26 (5) 569–573. CrossRefGoogle Scholar
  35. 35.
    Freudig, B., Tesch, S., Schubert, H. (2003). Production of emulsions in high-pressure homogenizers - Part II: Influence of Cavitation on Droplet Breakup. Eng Life Sci. 6 (3) 266–270. CrossRefGoogle Scholar
  36. 36.
    Köhler, K., Aguilar, F.A., Hensel, A., Schubert, H., Schuchmann, H.P. (2009). Design of a Micro-Structured System for the Homogenization of Dairy Products at High Fat Content - Part III: Influence of Geometric Parameters. Chem.-Ing.-Tech. 32 (7) 1120–1126. Google Scholar
  37. 37.
    Schröder, V. (1999). Herstellen von Öl-in-Wasser-Emulsionen mit mikroporösen Membranen. Dissertation, Universität Karlsruhe (TH). Google Scholar
  38. 38.
    Danner, T. (2001). Tropfenkoaleszenz in Emulsionen. Dissertation, Universität Karlsruhe (TH). Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Azad Emin
    • 1
    Email author
  • Karsten Köhler
    • 1
  • Marc Schlender
    • 1
  • Heike P. Schuchmann
    • 1
  1. 1.Institute of Food Process EngineeringKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations