3D Ultrasound to Stereoscopic Camera Registration through an Air-Tissue Boundary

  • Michael C. Yip
  • Troy K. Adebar
  • Robert N. Rohling
  • Septimiu E. Salcudean
  • Christopher Y. Nguan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6362)


A novel registration method between 3D ultrasound and stereoscopic cameras is proposed based on tracking a registration tool featuring both ultrasound fiducials and optical markers. The registration tool is pressed against an air-tissue boundary where it can be seen both in ultrasound and in the camera view. By localizing the fiducials in the ultrasound volume, knowing the registration tool geometry, and tracking the tool with the cameras, a registration is found. This method eliminates the need for external tracking, requires minimal setup, and may be suitable for a range of minimally invasive surgeries. A study of the appearance of ultrasound fiducials on an air-tissue boundary is presented, and an initial assessment of the ability to localize the fiducials in ultrasound with sub-millimeter accuracy is provided. The overall accuracy of registration (1.69 ± 0.60 mm) is a noticeable improvement over other reported methods and warrants patient studies.


Augmented Reality Registration Method Camera View Stereo Camera Laparoscopic Partial Nephrectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grimson, E., Leventon, M.: Clinical experience with a high precision image-guided neurosurgery system. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 63–73. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Fuchs, H., Livingston, M.A., Raskar, R., et al.: Augmented Reality Visualization for Laparoscopic Surgery. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 934–943. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Su, L.M., et al.: Augmented Reality During Robot-assisted Laparoscopic Partial Nephrectomy: Toward Real-Time 3D-CT to Stereoscopic Video Registration. J. Urology 73(4), 896–900 (2009)CrossRefGoogle Scholar
  4. 4.
    Teber, D., et al.: Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic Partial Nephrectomy? Preliminary In Vitro and In Vivo Results. European Urology 56(2), 332–338 (2009)CrossRefGoogle Scholar
  5. 5.
    Cheung, C.L., et al.: Fusion of stereoscopic video and laparoscopic ultrasound for minimally invasive partial nephrectomy. In: Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling. Proc. SPIE, vol. 7261, pp. 726109–726110 (2009)Google Scholar
  6. 6.
    Leven, J., et al.: DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 811–818. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Linte, C.A., et al.: Virtual reality-enhanced ultrasound guidance: A novel technique for intracardiac interventions. Comput. Aid. Surg. 13, 82–94 (2008)CrossRefGoogle Scholar
  8. 8.
    Lindseth, F., Tangen, G., Lango, T., Bang, J.: Probe calibration for freehand 3D ultrasound. Ultrasound Med. Biol. 29(11), 1607–1623 (2003)CrossRefGoogle Scholar
  9. 9.
    Mercier, L., Lango, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(4), 449–471 (2005)CrossRefGoogle Scholar
  10. 10.
    Baghani, A., Eskandari, H., Salcudean, S., Rohling, R.: Measurement of viscoelastic properties of tissue mimicking material using longitudinal wave excitation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(7), 1405–1418 (2009)CrossRefGoogle Scholar
  11. 11.
    Poon, T.C., Rohling, R.N.: Tracking a 3-D ultrasound probe with constantly visible fiducials. Ultrasound in Medicine & Biology 33(1), 152–157 (2007)CrossRefGoogle Scholar
  12. 12.
    Prager, R.W., Rohling, R.N., Gee, A.H., Berman, L.: Rapid calibration for 3-D freehand ultrasound. Ultrasound Med. Biol. 24, 855–869 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael C. Yip
    • 1
  • Troy K. Adebar
    • 1
  • Robert N. Rohling
    • 1
  • Septimiu E. Salcudean
    • 1
  • Christopher Y. Nguan
    • 2
  1. 1.University of British ColumbiaCanada
  2. 2.Vancouver General HospitalVancouverCanada

Personalised recommendations