Abstract
The effectiveness and clinical benefits of image guided surgery are well established for procedures where there is manageable tissue motion. In minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale tissue deformation prohibits accurate registration and fusion of pre- and intra-operative data. Vision based techniques such as structure from motion and simultaneous localization and mapping are capable of recovering 3D structure and laparoscope motion. Current research in the area generally assumes the environment is static, which is difficult to satisfy in most surgical procedures. In this paper, a novel framework for simultaneous online estimation of laparoscopic camera motion and tissue deformation in a dynamic environment is proposed. The method only relies on images captured by the laparoscope to sequentially and incrementally generate a dynamic 3D map of tissue motion that can be co-registered with pre-operative data. The theoretical contribution of this paper is validated with both simulated and ex vivo data. The practical application of the technique is further demonstrated on in vivo procedures.
Chapter PDF
Similar content being viewed by others
Keywords
References
Mountney, P., Stoyanov, D., Davison, A.J., Yang, G.-Z.: Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 347–354. Springer, Heidelberg (2006)
Garcıa, O., Civera, J., Gueme, A., Munoz, V., Montiel, J.M.M.: Real-time 3D Modeling from Endoscope Image Sequences. In: International Conference on Robotics and Automation Workshop on Advanced Sensing and Sensor Integration in Medical Robotics (2009)
Koppel, D., Chen, C.-I., Wang, Y.-F., Lee, H., Gu, J., Poirson, A., et al.: Toward automated model building from video in computer-assisted diagnoses in colonoscopy. In: Proc. SPIE (2007)
Wu, C.-H., Sun, Y.-N., Chang, C.-C.: Three-dimensional modeling from endoscopic video using geometric constraints via feature positioning. IEEE Transactions on Biomedical Engineering 54(7), 1199–1211 (2007)
Burschka, D., Li, M., Ishii, M., Taylor, R., Hager, G.D.: Scale-invariant Registration of Monocular Endoscopic Images to CT-scans for Sinus Surgery. Medical Image Analysis 9(5), 413–426 (2005)
Hu, M., Penney, G.P., Rueckert, D., Edwards, P.J., Bello, R., Casula, R., et al.: Non-rigid Reconstruction of the beating Heart Surface for Minimally Invasive Cardiac Surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 34–42. Springer, Heidelberg (2009)
Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A., Yang, G.-Z.: Soft-tissue Motion Tracking and Structure Estimation for Robotic Assisted MIS Procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)
Davies, S.C., Hill, A.L., Holmes, R.B., Halliwell, M., Jackson, P.C.: Ultrasound quantitation of respiratory organ motion in the upper abdomen. British Journal of Radiology 67, 1096–1102 (1994)
Mountney, P., Yang, G.-Z.: Soft Tissue Tracking for Minimally Invasive Surgery: Learning Local Deformation Online. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 364–372. Springer, Heidelberg (2008)
Lujan, A.E., Larsen, E.W., Balter, J.M., Haken, R.K.T.: A Method for Incorporating Organ Motion due to Breathing into 3D Dose Calculations. Medical Phisics 26(5), 715–720 (1999)
Noonan, D., Mountney, P., Elson, D., Darzi, A., Yang, G.-Z.: A Stereoscopic Fibroscope for Camera Motion and 3D Depth Recovery During Minimally Invasive Surgery. In: International Conference on Robotics and Automation, pp. 4463–4468 (2009)
Lerotic, M., Chung, A.J., Mylonas, G., Yang, G.-Z.: pq -space Based Non-Photorealistic Rendering for Augmented Reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)
Mountney, P., Yang, G.-Z.: Dynamic View Expansion for Minimally Invasive Surgery using Simultaneous Localization And Mapping. In: Engineering in Medicine and Biology Conference, pp. 1184–1187 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mountney, P., Yang, GZ. (2010). Motion Compensated SLAM for Image Guided Surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15745-5_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-15745-5_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15744-8
Online ISBN: 978-3-642-15745-5
eBook Packages: Computer ScienceComputer Science (R0)