• Christian SpickermannEmail author
Part of the Springer Theses book series (Springer Theses)

Computational Details

All quantum chemical calculations have been performed employing the Turbomole 5.91 program package with the exception of the coupled cluster results (obtained from the Molpro package) as well as the natural bond orbital analysis (obtained from the Gaussian suite of programs) [1, 2, 3]. The second order Møller–Plesset perturbation theory (MP2) and the gradient-corrected density functional theory results have been obtained in the frame of the resolution of identity (ri) approximation [4, 5]. In all calculations the energy convergency criterion was fixed to 10−8 a.u. and the maximum norm of the cartesian gradient has been constrained to 10−4 a.u. in all cases, with the exception of the hydrogen fluoride \(\hbox{MP2/QZVP}^{\star}\)


Hydrogen Fluoride Single Point Calculation Rigid Rotor Harmonic Oscillator Respective Potential Energy Surface Product Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  2. 2.
    Frisch MJ et al (2004) Gaussian03Google Scholar
  3. 3.
    Werner H-J, Knowles PJ, Lindh R, Schütz M et al (2006) ‘MOLPRO, version 2006, a package of ab initio programs, see
  4. 4.
    Haase F, Ahlrichs R (1993) J Comput Chem 14:907–912CrossRefGoogle Scholar
  5. 5.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290CrossRefGoogle Scholar
  6. 6.
    Stoll H (1992) Chem Phys Lett 191:548–552CrossRefGoogle Scholar
  7. 7.
    Friedrich J, Perlt E, Roatsch M, Spickermann C, Kirchner B (2010) J Chem Theory Comput (submitted)Google Scholar
  8. 8.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  9. 9.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  10. 10.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  11. 11.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  12. 12.
    Halkier A, Helgaker T, Jørgenson P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252CrossRefGoogle Scholar
  13. 13.
    Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895–910CrossRefGoogle Scholar
  14. 14.
    Neugebauer J, Herrmann C, Reiher M (2007) SNF 4.0. ETH Zürich, ZürichGoogle Scholar
  15. 15.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  16. 16.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  18. 18.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  19. 19.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  20. 20.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  21. 21.
    Wells BH, Wilson S (1983) Chem Phys Lett 101:429–434CrossRefGoogle Scholar
  22. 22.
    Davidson ER (1967) J Chem Phys 46:3320–3324CrossRefGoogle Scholar
  23. 23.
    Roby KR (1974) Mol Phys 27:81–104CrossRefGoogle Scholar
  24. 24.
    Reckien W, Eggers M, Vögtle F, Schalley CA, Peyerimhoff SD, Kirchner B to be publishedGoogle Scholar
  25. 25.
    PEACEMAKER V 1.4 Copyright B. Kirchner, written by Kirchner B, Spickermann C, Lehmann SBC, Perlt E, Uhlig F, Langner J, Domaros Mv, Reuther P (2004–2009), University of Bonn, Institute of Physical and Theoretical Chemistry, University of Leipzig, Wilhelm–Ostwald Institute of Physical and Theoretical Chemistry Bonn-Leipzig 2009, see also

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair II of Inorganic ChemistryRuhr-University Bochum, Organometallics and MaterialsBochumGermany

Personalised recommendations