Liquid Phase Thermodynamics from the Quantum Cluster Equilibrium Model

  • Christian SpickermannEmail author
Part of the Springer Theses book series (Springer Theses)


In the present chapter the effect of interparticle interactions (and excluded volume) on thermodynamic quantities of the liquid phase will be investigated in terms of the quantum cluster equilibrium model. The main focus will again be set to the calculation of condensed phase entropies, since this quantity proved to be problematic for the conventional rigid rotor harmonic oscillator approach. The results presented in the previous chapter demonstrate that if a partitioning of the atomic degrees of freedom of a molecule into molecular degrees of freedom is carried out, the (approximate) treatment of the volume available for translation is of increased significance for the translational entropy contribution. In the following, this result will be examined in more detail and related to the effect arising from interactions between the particles. These factors can be expected to be most important in the case of associated liquids, and the systems investigated are the liquid phases of water and hydrogen fluoride, both of which exhibit relatively strong intermolecular interactions in terms of hydrogen bonding.


Interaction Energy Molar Volume Hydrogen Fluoride Pair Interaction Energy Intercluster Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Spickermann C, Lehmann SBC, Kirchner B (2008) J Chem Phys 128:244506CrossRefGoogle Scholar
  2. 2.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1640–1649CrossRefGoogle Scholar
  3. 3.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1650–1656CrossRefGoogle Scholar
  4. 4.
    Barker JA, Watts RO (1969) Chem Phys Lett 3:144–145CrossRefGoogle Scholar
  5. 5.
    Rahman A, Stillinger FH (1971) J Chem Phys 55:3336–3359CrossRefGoogle Scholar
  6. 6.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Leach AR (2001) Molecular modelling: principles and applications. Pearson Education, EssexGoogle Scholar
  8. 8.
    Franks F (1973) Water A comprehensive treatise. Plenum, New YorkGoogle Scholar
  9. 9.
    Ludwig R (2001) Angew Chem Int Ed 40:1808–1827CrossRefGoogle Scholar
  10. 10.
    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LGM, Nielsen A (2004) Science 304:995–999CrossRefGoogle Scholar
  11. 11.
    Head-Gordon T, Johnson ME (2006) Proc Nat Acad Sci USA 103:7973–7977CrossRefGoogle Scholar
  12. 12.
    Chatterjee S, Debenedetti PG, Stillinger FH, Lynden-Bell RM (2008) J Chem Phys 128:124511CrossRefGoogle Scholar
  13. 13.
    Röntgen WC (1892) Ann Phys 281:91–97Google Scholar
  14. 14.
    Lee H, Tuckermann ME (2007) J Chem Phys 126:164501CrossRefGoogle Scholar
  15. 15.
    Weinhold F (1998) J Chem Phys 109:373–384CrossRefGoogle Scholar
  16. 16.
    Ludwig R (2007) ChemPhysChem 8:938–943CrossRefGoogle Scholar
  17. 17.
    Klein ML, McDonald IR (1979) J Chem Phys 71:298–308CrossRefGoogle Scholar
  18. 18.
    Jedlovszky P, Vallauri R (1997) J Chem Phys 107:10166–10176CrossRefGoogle Scholar
  19. 19.
    Röthlisberger U, Parrinello M (1997) J Chem Phys 106:4658–4664CrossRefGoogle Scholar
  20. 20.
    Valle RGD, Gazzillo D (1999) Phys Rev B 59:13699–13706CrossRefGoogle Scholar
  21. 21.
    Kreitmeir M, Bertagnolli H, Mortensen JJ, Parrinello M (2003) J Chem Phys 118:3639–3645CrossRefGoogle Scholar
  22. 22.
    Izvekov S, Voth GA (2005) J Phys Chem B 109:6573–6586CrossRefGoogle Scholar
  23. 23.
    Deraman M, Dore J, Powles J, Holloway JH, Chieux P (1985) Mol Phys 55:1351–1367CrossRefGoogle Scholar
  24. 24.
    McLain SE, Benmore CJ, Siewenie JE, Urquidi J, Turner JFC (2004) Angew Chem Int Ed 43:1952–1955CrossRefGoogle Scholar
  25. 25.
    Pfleiderer T, Waldner I, Bertagnolli H, Tölheide K, Fischer HE (2000) J Chem Phys 113:3690–3696CrossRefGoogle Scholar
  26. 26.
    Ludwig R, Weinhold F, Farrar TC (1995) J Chem Phys 103:3636–3642CrossRefGoogle Scholar
  27. 27.
    Kirchner B (2005) J Chem Phys 123:204116CrossRefGoogle Scholar
  28. 28.
    Ludwig R, Weinhold F (1999) J Chem Phys 110:508–515CrossRefGoogle Scholar
  29. 29.
    Lenz A, Ojamäe L (2009) J Chem Phys 131:134302CrossRefGoogle Scholar
  30. 30.
    Ludwig R, Weinhold F (2002) Z Phys Chem 216:659–674Google Scholar
  31. 31.
    Ludwig R, Behler J, Klink B, Weinhold F (2002) Angew Chem Int Ed 41:3199–3202CrossRefGoogle Scholar
  32. 32.
    Wendt MA, Weinhold F, Farrar TC (1998) J Chem Phys 109:5945–5947CrossRefGoogle Scholar
  33. 33.
    Borowski P, Jaroniec J, Janowski T, Woliński K (2003) Mol Phys 101:1413–1421CrossRefGoogle Scholar
  34. 34.
    Ludwig R (2005) ChemPhysChem 6:1369–1375CrossRefGoogle Scholar
  35. 35.
    Ludwig R (2005) ChemPhysChem 6:1376–1380CrossRefGoogle Scholar
  36. 36.
    Song H-J, Xiao H-M, Dong H-S, Huang Y-G (2006) J Mol Struct (Theochem) 767:67–73CrossRefGoogle Scholar
  37. 37.
    PEACEMAKER V 1.4 Copyright B Kirchner, written by Kirchner B, Spickermann C, Lehmann SBC, Perlt E, Uhlig F, Langner J, Domaros Mv, Reuther P, 2004–2009, University of Bonn, Institute of Physical and Theoretical Chemistry, University of Leipzig, Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry Bonn-Leipzig 2009, see also
  38. 38.
    Rincòn L, Almeida R, García-Aldea D, Riega HD (2001) J Chem Phys 114:5552–5561CrossRefGoogle Scholar
  39. 39.
    Frank HS, Wen W (1957) Discuss Faraday Soc 24:133–140CrossRefGoogle Scholar
  40. 40.
    Koßmann S, Thar J, Hunt PA, Welton T, Kirchner B (2006) J Chem Phys 124:174506CrossRefGoogle Scholar
  41. 41.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  42. 42.
    Weinhold F (2006) Adv Protein Chem 72:121–155CrossRefGoogle Scholar
  43. 43.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  44. 44.
    Spickermann C (2006) Calculation of thermodynamical quantities in non-covalently bonded systems. Thesis, Rheinische Friedrich-Wilhelms-Universität BonnGoogle Scholar
  45. 45.
    Cournoyer ME, Jorgensen WL (1984) Mol Phys 51:119–132CrossRefGoogle Scholar
  46. 46.
    Liem SY, Popelier PLA (2003) J Chem Phys 119:4560–4566CrossRefGoogle Scholar
  47. 47.
    Quack M, Stohner J, Suhm MA (2001) J Mol Struct 599:381–425CrossRefGoogle Scholar
  48. 48.
    Stoll H (1992) Chem Phys Lett 191:548–552CrossRefGoogle Scholar
  49. 49.
    Halkier A, Helgaker T, Jørgenson P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252CrossRefGoogle Scholar
  50. 50.
    Friedrich J, Perlt E, Roatsch M, Spickermann C, Kirchner B (2010) J Chem Theory Comput, submittedGoogle Scholar
  51. 51.
    Pine AS, Howard BJ (1986) J Chem Phys 84:590–596CrossRefGoogle Scholar
  52. 52.
    Jensen F (1999) Introduction to computational chemistry. Wiley-VCH, ChichesterGoogle Scholar
  53. 53.
    Guedes RC, do Couto PC, Cabral BJC (2003) J Chem Phys 118:1272–1281CrossRefGoogle Scholar
  54. 54.
    Holleman AF, Wiberg N, Wiberg E (2007) Lehrbuch der Anorganischen Chemie. de Gruyter, BerlinGoogle Scholar
  55. 55.
    Yaws CL (ed) (1999) Chemical properties handbook. McGraw–Hill, New YorkGoogle Scholar
  56. 56.
    Vanderzee CE, Rodenburg WW (1970) J Chem Thermodyn 2:461–478CrossRefGoogle Scholar
  57. 57.
    Geiger A, Kowall T (1994) Hydrogen bonding and molecular mobility in aqueous systems. In: Bellissent-Funel MC, Dore JC (eds) Hydrogen bond networks. Kluwer Academic Publishers, DordrechtGoogle Scholar
  58. 58.
    Sun Q (2010) J Chem Phys 132:054507CrossRefGoogle Scholar
  59. 59.
    Kirchner B (2007) Phys Rep 440:1–111CrossRefGoogle Scholar
  60. 60.
    Silla E, Tunon I, Pascual-Ahuir JL (1991) J Comput Chem 12:1077–1088CrossRefGoogle Scholar
  61. 61.
    National Institute of Standards and Technology, NIST chemistry webbook. see
  62. 62.
    Lide DR (2000) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  63. 63.
    Simons JH, Bouknight JW (1932) J Am Chem Soc 54:129–135CrossRefGoogle Scholar
  64. 64.
    McQuarrie DA, Simon JD (1997) Physical chemistry. University Science Books, SausalitoGoogle Scholar
  65. 65.
    Ludwig R, Weinhold F, Farrar TC (1997) J Chem Phys 107:499–507CrossRefGoogle Scholar
  66. 66.
    Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2006) Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair II of Inorganic ChemistryRuhr-University Bochum, Organometallics and MaterialsBochumGermany

Personalised recommendations