Advertisement

Assessment of the Rigid Rotor Harmonic Oscillator Model at Increased Densities

  • Christian SpickermannEmail author
Chapter
  • 610 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The ball and stick model shown in Fig. 3.1 indicates two wheel-to-axle amide hydrogen bonds labeled as “wa1” and “wa2” as well as a single axle-to-wheel hydrogen bond labeled as “aw”. The orientation of the four amide groups of the macrocycle is also indicated via the labels “in” and “out”, where “out” denotes an amide group whose carbonyl bond points away from the cavity of the wheel.

Keywords

Partition Function Entropy Change Entropy Contribution High Temperature Limit Total Interaction Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spickermann C, Felder T, Schalley CA, Kirchner B (2008) Chem Eur J 14:1216–1227CrossRefGoogle Scholar
  2. 2.
    Reckien W, Spickermann C, Eggers M, Kirchner B (2008) Chem Phys 343:186–199CrossRefGoogle Scholar
  3. 3.
    Kirchner B, Spickermann C, Reckien W, Schalley CA (2010) J Am Chem Soc 132:484–494CrossRefGoogle Scholar
  4. 4.
    Schalley CA, Weilandt T, Brüggemann J, Vögtle, F (2004) Top Curr Chem 248:141–200Google Scholar
  5. 5.
    Busch DH, Stephensen NA (1990) Coord Chem Rev 100:119–154CrossRefGoogle Scholar
  6. 6.
    Gerbeleu NV, Arion VB, Burgess J (1999) Template synthesis of macrocyclic compounds. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Diederich F, Stang PJ (2000) Templated organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Jäger R, Vögtle F (1997) Angew Chem Int Ed Engl 36:930–944CrossRefGoogle Scholar
  9. 9.
    Balzani V, Venturi M, Credi A (2003) Molecular devices and machines. Wiley-VCH:WeinheimCrossRefGoogle Scholar
  10. 10.
    Balzani V, Credi A, Silvi S, Venturi M (2006) Chem Soc Rev 35:1135–1149CrossRefGoogle Scholar
  11. 11.
    Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131–5133CrossRefGoogle Scholar
  12. 12.
    Walker JE (1998) Angew Chem Int Ed 37:2309–2319CrossRefGoogle Scholar
  13. 13.
    Boyer PD (1998) Angew Chem Int Ed 37:2297–2307CrossRefGoogle Scholar
  14. 14.
    Schalley CA, Beizai K, Vögtle F (2001) Acc Chem Res 34:465–476CrossRefGoogle Scholar
  15. 15.
    Hunter CA (1992) J Am Chem Soc 114:5303–5311CrossRefGoogle Scholar
  16. 16.
    Pauling LJ (1954) Phys Chem 58:662–666CrossRefGoogle Scholar
  17. 17.
    Reiher M, Sellmann D, Hess BA (2001) Theor Chem Acc 106:379–392Google Scholar
  18. 18.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  19. 19.
    Wells BH, Wilson S (1983) Chem Phys Lett 101:429–434CrossRefGoogle Scholar
  20. 20.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88: 899–926CrossRefGoogle Scholar
  21. 21.
    McQuarrie DA (1976) Statistical mechanics. Harper and Row, New YorkGoogle Scholar
  22. 22.
    McQuarrie DA, Simon JD (1997) Physical chemistry. University Science Books, SausalitoGoogle Scholar
  23. 23.
    Kirchner B, Reiher M (2007) Theoretical methods for supramolecular chemistry. In: Schalley CA (eds) Analytical methods in supramolecular chemistry. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Hirose K (2007) Determination of binding constants. In: Schalley CA (eds) Analytical methods in supramolecular chemistry. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Peter C, Oostenbrink C, van Dorp A, van Gunsteren WF (2004) J Chem Phys 120:2652–2661CrossRefGoogle Scholar
  26. 26.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102–105CrossRefGoogle Scholar
  27. 27.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010–6015CrossRefGoogle Scholar
  28. 28.
    Giauque WF, Kemp JD (1938) J Chem Phys 6:40–52CrossRefGoogle Scholar
  29. 29.
    Curtiss LA, Frurip DJ, Blander M (1979) J Chem Phys 71:2703–2711CrossRefGoogle Scholar
  30. 30.
    Frurip DJ, Curtiss LA, Blander M (1980) J Am Chem Soc 102:2610–2616CrossRefGoogle Scholar
  31. 31.
    Reiher M, Spickermann C, Kirchner B (2010) In preparationGoogle Scholar
  32. 32.
    Doty P, Myers GE (1953) Discuss Faraday Soc 13:51–58CrossRefGoogle Scholar
  33. 33.
    Doty P, Edsall JT (1951) Adv Protein Chem 6:35–121CrossRefGoogle Scholar
  34. 34.
    Steinberg IZ, Scheraga HA (1963) J Biol Chem 238:172–181Google Scholar
  35. 35.
    Schwarzenbach G (1952) Helv Chim Acta 35:2344–2363CrossRefGoogle Scholar
  36. 36.
    Page MI, Jencks WP (1971) Proc Nat Acad Sci USA 68:1678–1683CrossRefGoogle Scholar
  37. 37.
    Dunitz JD (1995) Chem Biol 2:709–712CrossRefGoogle Scholar
  38. 38.
    Doig AJ, Williams DH (1992) J Am Chem Soc 114:338–343CrossRefGoogle Scholar
  39. 39.
    Holtzer A (1995) Biopolymers 35:595–602CrossRefGoogle Scholar
  40. 40.
    Jencks WP (1981) Proc Nat Acad Sci USA 78:4046–4050CrossRefGoogle Scholar
  41. 41.
    Tidor B, Karplus M (1994) J Mol Biol 238:405–414CrossRefGoogle Scholar
  42. 42.
    Searle MS, Williams DH (1992) J Am Chem Soc 114:10690–10697CrossRefGoogle Scholar
  43. 43.
    Hermans J, Wang L (1997) J Am Chem Soc 119:2707–2714CrossRefGoogle Scholar
  44. 44.
    Fu A, Thiel W (2006) J Mol Struct 765:45–52Google Scholar
  45. 45.
    Firman TK, Ziegler T (2001) J Organomet Chem 635:153–164CrossRefGoogle Scholar
  46. 46.
    Haras A, Michalak A, Rieger B, Ziegler T (2006) Organometallics 25:946–953CrossRefGoogle Scholar
  47. 47.
    Woo TK, Blöchl PE, Ziegler T (2000) J Phys Chem A 104:121–129CrossRefGoogle Scholar
  48. 48.
    Tuttle T, Wang D, Thiel W (2006) Organometallics 25:4504–4513CrossRefGoogle Scholar
  49. 49.
    Jensen VR, Koley D, Jagadeesh MN, Thiel W (2005) Macromolecules 38:10266–10278CrossRefGoogle Scholar
  50. 50.
    Vyboishchikov SF, Bühl M, Thiel W (2002) Chem Eur J 8:3962–3975CrossRefGoogle Scholar
  51. 51.
    Goossen LJ, Koley D, Herman HL, Thiel W (2005) Organometallics 24:2398–2410CrossRefGoogle Scholar
  52. 52.
    Cheong M, Ziegler T (2005) Organometallics 24:3053–3058CrossRefGoogle Scholar
  53. 53.
    Vyboishchikov SF, Thiel W (2005) Chem Eur J 11:3921–3935CrossRefGoogle Scholar
  54. 54.
    Tobisch S, Ziegler T (2004) J Am Chem Soc 126:9059–9071CrossRefGoogle Scholar
  55. 55.
    Tobisch S, Ziegler T (2004) Organometallics 23:4077–4088CrossRefGoogle Scholar
  56. 56.
    Zhu H, Ziegler T (2006) J Organomet Chem 691:4486–4497CrossRefGoogle Scholar
  57. 57.
    Hristov IH, Ziegler T (2003) Organometallics 22:3513–3525CrossRefGoogle Scholar
  58. 58.
    Timoshkin AY, Siodmiak, M, Korkin AA, Frenking G (2003) Comput Mater Sci 27:109–116CrossRefGoogle Scholar
  59. 59.
    Wertz DH (1980) J Am Chem Soc 102:5316–5322CrossRefGoogle Scholar
  60. 60.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  61. 61.
    Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895–910CrossRefGoogle Scholar
  62. 62.
    Jensen F (1999) Introduction to computational chemistry. Wiley-VCH, ChichesterGoogle Scholar
  63. 63.
    Frisch MJ et al. (2004) Gaussian03Google Scholar
  64. 64.
    Bowman JM (1986) Acc Chem Res 19:202–208CrossRefGoogle Scholar
  65. 65.
    Roy TK, Prasad MD (2009) J Chem Phys 131: 114102CrossRefGoogle Scholar
  66. 66.
    Janzen J, Bartell LS (1969) J Chem Phys 50:3611–3618CrossRefGoogle Scholar
  67. 67.
    Deraman M, Dore J, Powles J, Holloway JH, Chieux P (1985) Mol Phys 55:1351–1367CrossRefGoogle Scholar
  68. 68.
    Pekeris CL (1934) Phys Rev 45:98–103CrossRefGoogle Scholar
  69. 69.
    Botschwina P, Flügge J (1991) Chem Phys Lett 180:589–593CrossRefGoogle Scholar
  70. 70.
    Atkins PW (1990) Physical chemistry. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1640–1649CrossRefGoogle Scholar
  72. 72.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1650–1656CrossRefGoogle Scholar
  73. 73.
    Levine IN (2000) Quantum chemistry. Prentice Hall, New JerseyGoogle Scholar
  74. 74.
    Brehm G, Reiher M, Schneider S (2002) J Phys Chem A 106:12024–12034CrossRefGoogle Scholar
  75. 75.
    Slanina Z (1991) Thermochim Acta 182:67–75CrossRefGoogle Scholar
  76. 76.
    Slanina Z (1987) Comput Chem 11:231–234CrossRefGoogle Scholar
  77. 77.
    National Institute of Standards and Technology, “NIST chemistry webbook”, see http://webbook.nist.gov/
  78. 78.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55Google Scholar
  79. 79.
    Reiher M, Salomon O, Sellmann D, Hess BA (2001) Chem Eur J 7:5195–5202CrossRefGoogle Scholar
  80. 80.
    Hoy AR, Bunker PR (1979) J Mol Spectros 74:1–8CrossRefGoogle Scholar
  81. 81.
    Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139–1165CrossRefGoogle Scholar
  82. 82.
    Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895–910CrossRefGoogle Scholar
  83. 83.
    Neugebauer J, Hess BA (2003) J Chem Phys 118:7215–7225CrossRefGoogle Scholar
  84. 84.
    Wolfram Research, Inc. (2005) Mathematica version 5.2. Wolfram Research, Inc., Champaign, IllinoisGoogle Scholar
  85. 85.
    Helgaker T, Jørgensen P, Olsen J (2004) Molecular electronic-structure theory. Wiley-VCH, ChichesterGoogle Scholar
  86. 86.
    Boese AD, Klopper W, Martin JML (2005) Mol Phys 103:863–876CrossRefGoogle Scholar
  87. 87.
    Wilson EB Jr (1959) Adv Chem Phys 2:367–393CrossRefGoogle Scholar
  88. 88.
    West W, Edwards RT (1937) J Chem Phys 5:14–21CrossRefGoogle Scholar
  89. 89.
    Hirota E (1953) Bull Chem Soc Jpn 26:397–400CrossRefGoogle Scholar
  90. 90.
    Pullin ADE (1960) Spectrochim Acta 16:12–24CrossRefGoogle Scholar
  91. 91.
    Fenlon PF, Cleveland FF, Meister AG (1951) J Chem Phys 19:1561–1565CrossRefGoogle Scholar
  92. 92.
    Yu YB, Privalov PL, Hodges RS (2001) Biophys J 81:1632–1642CrossRefGoogle Scholar
  93. 93.
    Vallet V, Wahlgren U, Grenthe I (2003) J Am Chem Soc 125:14941–14950CrossRefGoogle Scholar
  94. 94.
    Schlund S, Schmuck C, Engels B (2005) J Am Chem Soc 127:11115–11124CrossRefGoogle Scholar
  95. 95.
    Hupp T, Sturm C, Janke EMB, Cabre MP, Weisz K, Engels B (2005) J Phys Chem A 109:1703–1712CrossRefGoogle Scholar
  96. 96.
    Amzel LM (1997) Proteins 28:144–149CrossRefGoogle Scholar
  97. 97.
    Zhou HX, Gilson MK (2009) Chem Rev 109:4092–4107CrossRefGoogle Scholar
  98. 98.
    Hirschfelder J, Stevenson D, Eyring H (1937) J Chem Phys 5:896–912CrossRefGoogle Scholar
  99. 99.
    Frank HS, Evans WM (1945) J Chem Phys 13:507–532CrossRefGoogle Scholar
  100. 100.
    Henchman RH (2007) J Chem Phys 126:064504CrossRefGoogle Scholar
  101. 101.
    Siebert X, Amzel LM (2004) Proteins 54:104–115CrossRefGoogle Scholar
  102. 102.
    Chen J, Brooks CL III, Scheraga HA (2008) J Phys Chem B 112:242–249CrossRefGoogle Scholar
  103. 103.
    Mammen M, Shakhnovich EI, Deutch JM, Whitesides GM (1998) J Org Chem 63:3821–3830CrossRefGoogle Scholar
  104. 104.
    Trouton F (1884) Phil Mag 18:54–57Google Scholar
  105. 105.
    Gurney RW (1953) Ionic processes in solution. McGraw-Hill, New YorkGoogle Scholar
  106. 106.
    Kauzmann W (1959) Adv Protein Chem 14:1–63CrossRefGoogle Scholar
  107. 107.
    Murphy KP, Xie D, Thompson KS, Amzel LM, Freire E (1994) Proteins 18:63–67CrossRefGoogle Scholar
  108. 108.
    Mayer JE, Mayer MG (1940) Statistical mechanics. John Wiley, New YorkGoogle Scholar
  109. 109.
    Pelmenschikov V, Siegbahn PEM (2006) J Am Chem Soc 128:7466–7475CrossRefGoogle Scholar
  110. 110.
    Rulíšek L, Jensen KP, Lundgren K, Ryde U (2006) J Comput Chem 27:1398–1414CrossRefGoogle Scholar
  111. 111.
    Yu Z, Houk KN (2003) J Am Chem Soc 125:13825–13830CrossRefGoogle Scholar
  112. 112.
    Lide DR (2000) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  113. 113.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805Google Scholar
  114. 114.
    Zhan CG, Chipman DM (1998) J Chem Phys 109:10543–10558CrossRefGoogle Scholar
  115. 115.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair II of Inorganic ChemistryRuhr-University Bochum, Organometallics and MaterialsBochumGermany

Personalised recommendations