Advertisement

From Atomistic Calculations to Thermodynamic Quantities

  • Christian SpickermannEmail author
Chapter
  • 594 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter gives a short summary of well-established as well as more recent pathways for extracting information about thermodynamic equilibrium quantities out of microscopic calculations, which are based on different approximations of quantum mechanics and as such only provide information about mechanical properties at first. The standard rigid rotor harmonic oscillator (rrho) model for the prediction of thermodynamic gas phase properties out of molecular quantities as well as its basis, the factorization of the N-particle partition function, will be revisited in detail along with a brief inspection of the different approximations this approach relies on. The quantum cluster equilibrium (qce) model will be exposed subsequently in terms of a van der Waals-like extension of the rrho approach for the thermodynamic treatment of condensed phases. In addition, several methods for computing thermodynamic equilibrium properties from molecular dynamics (md) simulations will be covered as well.

Keywords

Partition Function Free Energy Change Hamilton Operator Interparticle Interaction Single Particle State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McQuarrie DA (1976) Statistical mechanics. Harper and Row, New YorkGoogle Scholar
  2. 2.
    Kirkwood JG (1933) Phys Rev 44:31–37CrossRefGoogle Scholar
  3. 3.
    Kirkwood JG (1934) Phys Rev 45:116–117CrossRefGoogle Scholar
  4. 4.
    Jensen F (1999) Introduction to computational chemistry. Wiley-VCH, ChichesterGoogle Scholar
  5. 5.
    Levine IN (2000) Quantum Chemistry. Prentice Hall, New JerseyGoogle Scholar
  6. 6.
    Pathria RK (1996) Statistical mechanics, 2nd edn. Elsevier, OxfordGoogle Scholar
  7. 7.
    ter Haar D (1995) Elements of statistical mechanics. Butterworth–Heinemann Ltd, OxfordGoogle Scholar
  8. 8.
    Reinhold J (2004) Quantentheorie der Moleküle. Teubner, WiesbadenGoogle Scholar
  9. 9.
    Szabo A, Ostlund NS (1996) Modern quantum Chemistry. Dover, New YorkGoogle Scholar
  10. 10.
    Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    McQuarrie DA, Simon JD (1997) Physical Chemistry. University Science Books, SausalitoGoogle Scholar
  12. 12.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  13. 13.
    Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895–910CrossRefGoogle Scholar
  14. 14.
    Weinhold F (1998) J Chem Phys 109:367–372CrossRefGoogle Scholar
  15. 15.
    Kirchner B (2007) Phys Rep 440:1–111CrossRefGoogle Scholar
  16. 16.
    Kirchner B (2005) J Chem Phys 123:204116CrossRefGoogle Scholar
  17. 17.
    Spickermann C, Lehmann SBC, Kirchner B (2008) J Chem Phys 128:244506CrossRefGoogle Scholar
  18. 18.
    Silla E, Tunon I, Pascual-Ahuir JL (1991) J Comput Chem 12:1077–1088CrossRefGoogle Scholar
  19. 19.
    Ponti A, Mella M (2003) J Phys Chem A 107:7589–7596CrossRefGoogle Scholar
  20. 20.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  21. 21.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1640–1649CrossRefGoogle Scholar
  22. 22.
    Lehmann SBC, Spickermann C, Kirchner B (2009) J Chem Theory Comput 5:1650–1656CrossRefGoogle Scholar
  23. 23.
    Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2006) Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  24. 24.
    Smithies F (2000) Notes Rec R Soc 54:333–341CrossRefGoogle Scholar
  25. 25.
    PEACEMAKER V 1.4 Copyright B. Kirchner, written by Kirchner B, Spickermann C, Lehmann SBC, Perlt E, Uhlig F, Langner J, Domaros Mv and Reuther P 2004–2009, University of Bonn, Institute of Physical and Theoretical Chemistry, University of Leipzig, Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry Bonn-Leipzig 2009, see also http://www.uni-leipzig.de/~quant/index.html/
  26. 26.
    Perlt E (2008) Isochore Wärmekapazität und Quantum Cluster Equilibrium-Methode, Thesis, Universität LeipzigGoogle Scholar
  27. 27.
    Fredenslund A, Jones RL, Prausnitz JM (1975) AIChE J 21:1086–1099CrossRefGoogle Scholar
  28. 28.
    Fredenslund A, Gmehling J, Rasmussen P (1977) Vapor-liquid equilibria using UNIFAC-A group contribution method. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Frenkel D, Smit B (2002) Understanding molecular simulations. Academic press, San DiegoGoogle Scholar
  30. 30.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  31. 31.
    Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Claredon Press, OxfordGoogle Scholar
  33. 33.
    Chipot C, Pohorille A (2007) Calculating free energy differences using perturbation theory. In: Chipot C, Pohorille A (eds) Free energy calculations. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Darve E (2007) Thermodynamic integration using constrained and unconstrained dynamics. In: Chipot C, Pohorille A (eds) Free energy calculations. Springer, BerlinGoogle Scholar
  35. 35.
    Peter C, Oostenbrink C, van Dorp A, van Gunsteren WF (2004) J Chem Phys 120:2652–2661CrossRefGoogle Scholar
  36. 36.
    Lu N, Kofke DA, Woolf TB (2003) J Phys Chem B 107:5598–5611CrossRefGoogle Scholar
  37. 37.
    Hummer G (2007) Nonequilibrium methods for equilibrium free energy calculations. In: Chipot C, Pohorille A (eds) Free energy calculations. Springer, BerlinGoogle Scholar
  38. 38.
    Jarzynski C (1997) Phys Rev Lett 78:2690–2693CrossRefGoogle Scholar
  39. 39.
    Crooks GA (2000) Phys Rev E 61:2361–2366CrossRefGoogle Scholar
  40. 40.
    Kac M (1949) Trans Am Math Soc 65:1–13Google Scholar
  41. 41.
    Hummer G, Szabo A (2005) Acc Chem Res 38:504–513CrossRefGoogle Scholar
  42. 42.
    Bennett CH (1976) J Comput Phys 22:245–268CrossRefGoogle Scholar
  43. 43.
    Cossins BP, Foucher S, Edge CM, Essex JW (2009) J Phys Chem B 113:5508–5513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair II of Inorganic ChemistryRuhr-University Bochum, Organometallics and MaterialsBochumGermany

Personalised recommendations