SPECT-CT for Tumor Imaging

  • Carina Mari Aparici
  • Anca M. Avram
  • Angel Soriano Castrejón
  • Ryan A. Dvorak
  • Paola Erba
  • Jure Fettich
  • José Manuel Cordero Garcia
  • Victor Manuel Poblete García
  • Randall Hawkins
  • Marina Hodolic
  • Prado Talavera Rubio
  • Youngho Seo
  • Ana María García Vicente
  • John Patrick Pilkington Woll
  • Ka Kit Wong


Somatostatine receptor scintigraphy (SRS) with somatostatine analogs is nowadays established as a first-line tool in the detection, staging and evaluation of the response of neuroendocrine tumors (NETs) and some neural crest tumors, yielding much better results than conventional imaging techniques [1] as many subtypes of these tumors overexpress a high density of somatostatine receptors at the cell surface [2, 3]. This overexpression of the somatostatin receptors, however, may also be present in some other tumors, such as differentiated thyroid carcinoma, lung cancer, breast cancer, meningiomas, well-differentiated astrocytomas, pituitary tumors, lymphoma and several others [4–7]. Some benign conditions, mainly related to the presence of inflammatory cells, i.e., in thyroidal oftalmopathy [8], may also show an increased expression of these surface receptors.


Single Photon Emission Compute Tomography Papillary Thyroid Carcinoma Carcinoid Tumor Teaching Point 123I MIBG 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1.  1.
    Chiti A, Fanti S, Savelli G, Romeo A, Bellanova B, Rodari M, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumors. Eur J Nucl Med. 1998;25:1396–403.PubMedCrossRefGoogle Scholar
  2.  2.
    Oberg K. Molecular imaging in diagnosis of neuroendocrine tumors. Lancet Oncol. 2006;7:790–2.PubMedCrossRefGoogle Scholar
  3.  3.
    Kwekkeboom DJ, Krenning EP, Scheidhauer K, Lewington V, Lebtahi R, Grossman A, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with 111In-pentetreotide. Neuroendocrinology 2009;90:184–9.PubMedCrossRefGoogle Scholar
  4.  4.
    Gotthardt M, Dijkgraaf I, Boerman OC, Oyen WJ. Nuclear medicine imaging and therapy of neuroendocrine tumors. Cancer Imaging. 2006;31:S178–84.CrossRefGoogle Scholar
  5.  5.
    Virgolini IJ, Gabriel M, von Guggenberg E, Putzer D, Kendler D, Decristoforo C. Role of radiopharmaceuticals in the diagnosis and treatment of neuroendocrine tumors. Eur J Cancer. 2009;45 Suppl 1:274–91.PubMedCrossRefGoogle Scholar
  6.  6.
    García Vicente A, García Del Castillo E, Soriano Castrejón A, Alonso Farto J. Olfactory esthesioneuroblastoma: scinti-graphic expression of somatostatin receptors. Rev Esp Med Nucl. 1999;18:367–70.Google Scholar
  7.  7.
    García Vicente A, Soriano Castrejón A, Alonso Farto J, Soler E, García del Castillo E. Merkel cell carcinoma. Utility of scintigraphy with 111In-DTPA-pentetreotide. Rev Esp Med Nucl. 1999;18:287–91.Google Scholar
  8. 8.
    Moncayo R, Baldissera I, Decristoforo C, Kendler D, Donnemiller E. Evaluation of immunological mechanisms mediating thyroid-associated ophthalmopathy by radionu-clide imaging using the somatostatin analog 11 1In-octreotide. Thyroid 1997;7:21–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24:28–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Kwekkeboom DJ, Reubi JC and Krenning EP. Peptide receptor scintigraphy in oncology. In: Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnoses and treatment. 3rd ed. London: Churchill-Livingstone; 2004. p. 97–106.Google Scholar
  11. 11.
    Banzo Marraco J, Prats Rivera E, Pazola Alba P, Tardín Cardoso L, Andres Gracia A, Santapau Traveria A. Diagnóstico y seguimiento de los tumores neuroendocrnos del tracto gastrointestinal mediante gammagrafía de receptores de somatostatina. In: Soriano Castrejón A, Martín Comín J, García Vicente AM, editors. Medicina Nuclear en la práctica clínica. Madrid: Aula Médica; 2009. p. 667–74.Google Scholar
  12. 12.
    Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol. 2008;63:241–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Schilacci O, Danieli R, Manni C, Simonetti G. Is SPECT/CT with hybrid cameras useful to improve scintigraphy imaging interpretation? Nucl Med Comm. 2004;25:705–10.CrossRefGoogle Scholar
  14. 14.
    Lucignani G, Bombardieri E. Progress and challenges in neuroendocrine and neural crest tumors: molecular imaging and therapy. Eur J Nucl Med Mol Imaging. 2009;36:2081–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, et al. Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumors. Radiol Med. 2008;113:1056–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Even-Sapir E, Keidar Z, Sachs J, Engel A, Bettman L, Gaitini D, et al. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med. 2001;42:998–1004.PubMedGoogle Scholar
  17. 17.
    Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumors. Clin Endocrinol. 2003;59:565–73.CrossRefGoogle Scholar
  18. 18.
    Pfannenberg AC, Eschmann SM, Horger M, Lamberts R, Vonthein R, Claussen CD, et al. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging. 2003;30:835–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003;97:934–59.PubMedCrossRefGoogle Scholar
  20. 20.
    Solcia E, Kloppel G, Sobin LH, et al. Histologic typing of endocrine tumors. WHO International Histological Classi-fication of Tumors. 2nd ed. Heidelberg: Springer; 2000.Google Scholar
  21. 21.
    van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ. Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol. 2009;5:382–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-Labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med. 2006;47:492–501.PubMedGoogle Scholar
  23. 23.
    Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52:784–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Beuthien-Baumann B, Strumpf A, Zessin J, Bredow J, Kotzerke J. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullarythyroid carcinoma. Eur J Nucl Med. 2007;34:1604–9.CrossRefGoogle Scholar
  25. 25.
    Timmers H, Kozupa A, Chen C, Carrasquillo JA, Ling A, Eisenhofer G, et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol. 2007;25:2262–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Koopmans KP, de Vries EG, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, et al. Staging of carcinoid tumors using 18F-DOPA positron emission tomography: a diagnostic accuracy study. Lancet Oncol. 2006;7:728–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxyphenyl-alanine and 11C-5-hydroxy-tryptophan positron emissiontomography. J Clin Oncol. 2008;26:1489–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Ambrosini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegri V. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med. 2010;51:669–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Lopci E, Nanni C, Rampin L, Rubello D, Fanti S. Clinical applications of 68Ga-DOTANOC in neuroendocrine tumors. Minerva Endocrinol. 2008;33:277–81.PubMedGoogle Scholar
  30. 30.
    Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP, de Vries EG, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71:199–213.PubMedCrossRefGoogle Scholar


  1. 31.
    Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR. 2008;190: 1085–90.PubMedCrossRefGoogle Scholar
  2. 32.
    Freitas JE. Adrenal cortical and medullary imaging. Semin Nucl Med. 1995;25:235–50.PubMedCrossRefGoogle Scholar
  3. 33.
    Bomanji J, Levison DA, Flatman WD, et al. Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med. 1987;28:973–8.PubMedGoogle Scholar
  4. 34.
    Garaventa A, Guerra P, Arrighini A, et al. Treatment of advanced neuroblastoma with I-131 metaiodobenzylguanidine. Cancer 1991;67:992–8.CrossRefGoogle Scholar
  5. 35.
    Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.PubMedGoogle Scholar
  6. 36.
    Merrick MV. Essentials of nuclear medicine. 2nd ed. Berlin: Springer; 1998. p. 171–295.Google Scholar
  7. 37.
    Van Der Horst-Schrivers AN, Jager PL, Boezen HM, Schouten JP, Kema IP, Links TP. Iodine-123 metaiodobenzylguanidine scintigraphy in localizing phaeochromocytomas: experience and meta-analysis. Anticancer Res. 2006;26:1599–604.Google Scholar
  8. 38.
    Nakatani T, Hayama T, Uchida J, et al. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of (123)I-MIBG imaging and (131)I-MIBG imaging. Oncol Rep. 2002;9:1225–7.PubMedGoogle Scholar
  9. 39.
    Anderson GS, Fish S, Nakhoda K, et al. Comparison of I-123 and I-131 for whole-body imaging after stimulation by recombinant human thyrotropin: a preliminary report. Clin Nucl Med. 2003;28:93–6.PubMedGoogle Scholar
  10. 40.
    Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and I-123- metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR. 2003;181:1115–24.PubMedGoogle Scholar
  11. 41.
    Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Pheochromocytoma. Lancet. 2005;366:665–75.PubMedCrossRefGoogle Scholar
  12. 42.
    Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.PubMedCrossRefGoogle Scholar
  13. 43.
    Pirson AS, Krug B, Tuerlinckx D. Additional value of I-123 MIBG SPECT in neuroblastoma. Clin Nucl Med. 2005;30:100–1.PubMedCrossRefGoogle Scholar
  14. 44.
    Ilias I, Shulkin B, Pacak K. New functional imaging modalities for chromaffin tumors, neuroblastomas and ganglioneuromas. Trends Endocrinol Metab 2005;16:66–72.PubMedCrossRefGoogle Scholar
  15. 45.
    Scanga DR, Martin WN, Delbeke D. Value of FDG PET imaging in the management of patients with thyroid, neuroendocrine, and neural crest tumors. Clin Nucl Med. 2004;29:86–90.PubMedCrossRefGoogle Scholar
  16. 46.
    Greenblatt DY, Shenker Y, Chen H. The utility of metaiodo-benzylguanidine (MIBG) scintigraphy in patients with pheochromocytoma. Ann Surg Oncol. 2008;15:900–5.PubMedCrossRefGoogle Scholar
  17. 47.
    Miskulin J, Shulkin BL, Doherty GM, et al. Is preoperative iodine 123 meta-iodobenzylguanidine scintigraphy routinely necessary before initial adrenalectomy for pheochromocytoma? Surgery 2003;134:918–22; discussion 922–3.Google Scholar
  18. 48.
    Bhatia KS, Ismail MM, Sahdev A, et al. 123I-Metaiodo­benzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal pheochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf). 2008;69:181–8.CrossRefGoogle Scholar
  19. 49.
    Mihai R, Gleeson F, Roskell D, et al. Routine preoperative (123)I-MIBG scintigraphy for patients with pheochromocytoma is not necessary. Langenbecks Arch Surg. 2008; 393:725–7.PubMedCrossRefGoogle Scholar
  20. 50.
    Wiseman GA, Pacak K, O’Dorisio MS, Neumann DR, Waxman AD, Mankoff DA, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50:1448–54.PubMedCrossRefGoogle Scholar
  21. 51.
    Strobel K, Burger C, Schneider P, et al. MIBG-SPECT/CT angiography with 3-D reconstruction of an extra-adrenal pheochromocytoma with dissection of an aortic aneurysm. Eur J Nucl Med Mol Imaging. 2007;34:150.PubMedCrossRefGoogle Scholar
  22. 52.
    Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.PubMedCrossRefGoogle Scholar
  23. 53.
    Ilias I, Pacak K. Anatomical and functional imaging of metastatic pheochromocytoma. Ann N Y Acad Sci. 2004;1018: 495–504.Google Scholar
  24. 54.
    Gross MD, Gauger PG, Djekidel M, Rubello D. The role of PET in the surgical approach to adrenal disease. Eur J Surg Oncol. 2009;35(11):1137–45.PubMedCrossRefGoogle Scholar
  25. 55.
    Ozer S, Dobrozemsky G, Kienast O. Value of combined XCT/SPECT technology for avoiding false positive planar (123)I-MIBG scintigraphy. Nuklearmedizin 2004;43:164–7.PubMedGoogle Scholar
  26. 56.
    Schillaci O, Danieli R, Manni C, Simonetti G. Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation? Nucl Med Commun. 2004;25:705–10.PubMedCrossRefGoogle Scholar
  27. 57.
    Meyer-Rochow G-Y, Schembri GP, Benn DE, Sywak MS, Delbridge LW, Robinson BG, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (MIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol. 2010;17:392–400.PubMedCrossRefGoogle Scholar


  1. 58.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.PubMedCrossRefGoogle Scholar
  2. 59.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.PubMedCrossRefGoogle Scholar
  3. 60.
    Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115(16):3801–7.PubMedCrossRefGoogle Scholar
  4. 61.
    Hay ID, McConahey WM, Goellner JR. Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic’s experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc. 2002;113:241–60.PubMedGoogle Scholar
  5. 62.
    Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006;16(12):1229–42.PubMedCrossRefGoogle Scholar
  6. 63.
    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97(5):418–28.PubMedCrossRefGoogle Scholar
  7. 64.
    Hay ID. Management of patients with low-risk papillary thyroid carcinoma. Endocr Pract. 2007;13(5):521–33.PubMedGoogle Scholar
  8. 65.
    Hay ID, McDougall IR, Sisson JC. A proposition for the use of radioiodine in WDTC management. J Nucl Med. 2009;50(2):328–9; author reply 329–30. Epub Jan 21, 2009.Google Scholar
  9. 66.
    Mazzaferri EL. Management of low-risk differentiated thyroid cancer. Endocr Pract. 2007;13(5):498–512.PubMedGoogle Scholar
  10. 67.
    McDougall IR, Hay ID. ATA Guidelines: do patients with stage I thyroid cancer benefit from (131)I? Thyroid 2007;17(6):595–6; author reply 596–7.Google Scholar
  11. 68.
    Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19(11):1167–214.PubMedCrossRefGoogle Scholar
  12. 69.
    British Thyroid Association RCOP. Guidelines for the management of thyroid cancer. 2nd ed. 2007. Accessed 24 Mar 2009.
  13. 70.
    Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med. 2009;39(4):276–89.PubMedCrossRefGoogle Scholar
  14. 71.
    Buck AK, Nekolla SG, Ziegler SI, Drzezga A. SPECT/CT. J Nucl Med. 2009;50(6):1009–10. Epub May 14,2009.Google Scholar
  15. 72.
    Delbeke D, Schoder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39(5):308–40.PubMedCrossRefGoogle Scholar
  16. 73.
    Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid imaging (SPECT/CT and PET/CT)—improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med 2009;39(4):264–75.PubMedCrossRefGoogle Scholar
  17. 74.
    Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85. Epub Feb 25, 2010.Google Scholar
  18. 75.
    Even-Sapir E, Keidar Z, Sachs J, et al. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med. 2001;42(7): 998–1004.Google Scholar
  19. 76.
    Yamamoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohkawa M. Clinical usefulness of fusion of 131I SPECT and CT images in patients with differentiated thyroid carcinoma. J Nucl Med. 2003;44(12):1905–10.PubMedGoogle Scholar
  20. 77.
    Ruf J, Lehmkuhl L, Bertram H, et al. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun. 2004;25(12):1177–82.PubMedCrossRefGoogle Scholar
  21. 78.
    Tharp K, Israel O, Hausmann J, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(10):1435–42.PubMedCrossRefGoogle Scholar
  22. 79.
    Aide N, Heutte N, Rame JP, et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation (131)I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94(6):2075–84.PubMedCrossRefGoogle Scholar
  23. 80.
    Barwick T, Murray I, Megadmi H, et al. SPECT/CT using Iodine-123 in patients with differentiated thyroid cancer—additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162(6):1131–9. Epub Mar 8, 2010.Google Scholar
  24. 81.
    Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49(12): 1952–57.PubMedCrossRefGoogle Scholar
  25. 82.
    Kohlfuerst S, Igerc I, Lobnig M, et al. Posttherapeutic (131)I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36(6):886–93.PubMedCrossRefGoogle Scholar
  26. 83.
    Mustafa M, Kuwert T, Weber K, et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging. 2010;37(8):1462–6. Epub Apr 1, 2010.Google Scholar
  27. 84.
    Schmidt D, Linke R, Uder M, Kuwert T. Five months’ follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by (131) I-SPECT/CT at the first radioablation. Eur J Nucl Med Mol Imaging. 2010;37(4):699–705.PubMedCrossRefGoogle Scholar
  28. 85.
    Schmidt D, Szikszai A, Linke R, Bautz W, Kuwert T. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50(1):18–23.PubMedCrossRefGoogle Scholar
  29. 86.
    Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50(2):184–90.PubMedCrossRefGoogle Scholar
  30. 87.
    Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33(1):49–54.PubMedCrossRefGoogle Scholar
  31. 88.
    Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol. 2008;191(6):1785–94.PubMedCrossRefGoogle Scholar
  32. 89.
    Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic 131-I SPECT-CT. AJR Am J Roentgenol. 2010;195(3):730–6.PubMedCrossRefGoogle Scholar
  33. 90.
    Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma. Br J Radiol. 2009;82(982):860–76.PubMedCrossRefGoogle Scholar
  34.  91.
    Carlisle MR, Lu C, McDougall IR. The interpretation of 131I scans in the evaluation of thyroid cancer, with an emphasis on false positive findings. Nucl Med Commun. 2003; 24(6):715–35.PubMedCrossRefGoogle Scholar
  35.  92.
    Leitha T, Staudenherz A. Frequency of diagnostic dilemmas in 131I whole body scanning. Nuklearmedizin. 2003; 42(2):55–62.PubMedGoogle Scholar
  36.  93.
    Mitchell G, Pratt BE, Vini L, McCready VR, Harmer CL. False positive 131I whole body scans in thyroid cancer. Br J Radiol. 2000;73(870):627–35.PubMedGoogle Scholar
  37.  94.
    Shapiro B, Rufini V, Jarwan A, et al. Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Semin Nucl Med. 2000;30(2):115–32.PubMedCrossRefGoogle Scholar
  38.  95.
    Agriantonis DJ, Hall L, Wilson MA. Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer. Clin Nucl Med. 2009;34(4):247–8.PubMedCrossRefGoogle Scholar
  39.  96.
    Aide N, Lehembre E, Gervais R, Bardet S. Unusual intratracheal metastasis of differentiated thyroid cancer accurately depicted by SPECT/CT acquisition after radioiodine ablation. Thyroid 2007;17(12):1305–6.PubMedCrossRefGoogle Scholar
  40.  97.
    Dumcke CW, Madsen JL. Usefulness of SPECT/CT in the diagnosis of intrathoracic goiter versus metastases from cancer of the breast. Clin Nucl Med. 2007;32(2):156–9.PubMedCrossRefGoogle Scholar
  41.  98.
    Macdonald W, Armstrong J. Benign struma ovarii in a patient with invasive papillary thyroid cancer: detection with I-131 SPECT-CT. Clin Nucl Med. 2007;32(5): 380–2.PubMedCrossRefGoogle Scholar
  42.  99.
    Qiu ZL, Luo QY. Erector spinae metastases from differentiated thyroid cancer identified by I-131 SPECT/CT. Clin Nucl Med. 2009;34(3): 137–40.PubMedCrossRefGoogle Scholar
  43. 100.
    Rachinsky I, Driedger A. Iodine-131 uptake in a menstruating uterus: value of SPECT/CT in distinguishing benign and metastatic iodine-positive lesions. Thyroid 2007;17(9):901–2.PubMedCrossRefGoogle Scholar
  44. 101.
    Thust S, Fernando R, Barwick T, Mohan H, Clarke SE. SPECT/CT identification of post-radioactive iodine treatment false-positive uptake in a simple renal cyst. Thyroid 2009;19(1):75–6.PubMedCrossRefGoogle Scholar
  45. 102.
    von Falck C, Beer G, Gratz KF, Galanski M. Renal metastases from follicular thyroid cancer on SPECT/CT. Clin Nucl Med. 2007;32(9):751–2.CrossRefGoogle Scholar
  46. 103.
    Wong KK, Avram AM. Posttherapy I-131 thymic uptake demonstrated with SPECT/CT in a young girl with papillary thyroid carcinoma. Thyroid 2008;18(8):919–20.PubMedCrossRefGoogle Scholar
  47. 104.
    Zhao LX, Li L, Li FL, Zhao Z. Rectus abdominis muscle metastasis from papillary thyroid cancer identified by I-131 SPECT/CT. Clin Nucl Med. 2010;35(5):360–1.PubMedCrossRefGoogle Scholar
  48. 105.
    Mian C, Barollo S, Pennelli G, et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf). 2008;68(1): 108–16.CrossRefGoogle Scholar
  49. 106.
    Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med. 2007;37(5):391–8.PubMedCrossRefGoogle Scholar
  50. 107.
    Sisson JC, Dewaraja YK, Wizauer EJ, Giordano TJ, Avram AM. Thyroid carcinoma metastasis to skull with infringement of brain: treatment with radioiodine. Thyroid 2009;19(3):297–303.PubMedCrossRefGoogle Scholar
  51. 108.
    Capoccetti F, Criscuoli B, Rossi G, Ferretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53(5):536–45.PubMedGoogle Scholar
  52. 109.
    Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging. 2002;29(6):760–7.PubMedCrossRefGoogle Scholar
  53. 110.
    Freudenberg LS, Antoch G, Gorges R, et al. Combined PET/CT with iodine-124 in diagnosis of spread metastatic thyroid carcinoma: a case report. Eur Radiol. 2003;13 Suppl 4:L19–23.PubMedCrossRefGoogle Scholar
  54. 111.
    Phan HT, Jager PL, Paans AM, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958–965.PubMedCrossRefGoogle Scholar


  1. 112.
    Von Guggenberg, Sarg E, Lindtner H, et al. Preparation via coligand exchange and characterization of 99m-Tc-EDDA-HYNIC-D-Phe1, Tyr3-octreotide (99m-Tc-EDDA/HYNIC-TOC). J Label Compd Radiopharm. 2003;46:07–18.Google Scholar
  2. 113.
    Gabriel M, Decrisoforo C, Donnemiller E, et al. An intra-patient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med. 2003;44:708–16.PubMedGoogle Scholar
  3. 114.
    Bangard M, Behe M, Guhlke S, et al. Detection of somatostatin receptor-positive tumors using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med. 2000;27:628–37.PubMedCrossRefGoogle Scholar
  4. 115.
    Kolenc P, Fettich J, Slodnjak I, et al. Comparison of 99mTc-EDDA/HYNIC-TOC and 111In-DTPA-octreotide uptake in patients without know pathology. Eur J Nucl Med Mol Imaging. 2004;31 Suppl 2:358 (abs).Google Scholar


  1. 116.
    Neri D, Bicknell R. Tumor vascular targeting. Nat Rev Cancer. 2005;5(6):436–46.PubMedCrossRefGoogle Scholar
  2. 117.
    Trachsel E, Neri D. Antibodies for angiogenesis inhibition, vascular targeting and endothelial cell transcytosis. Adv Drug Deliv Rev. 2006;58(5–6):735–54.PubMedCrossRefGoogle Scholar
  3. 118.
    Borsi L et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer. 2002;102(1):75–85.PubMedCrossRefGoogle Scholar
  4. 119.
    Carnemolla B et al. Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. Int J Cancer. 1996;68(3):397–405.PubMedCrossRefGoogle Scholar
  5. 120.
    Castellani P et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer. 1994;59(5):612–8.PubMedCrossRefGoogle Scholar
  6. 121.
    Neri D et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol. 1997;15(12): 1271–5.PubMedCrossRefGoogle Scholar
  7. 122.
    Rybak JN et al. Ligand-based vascular targeting of disease. Chem Med Chem. 2007;2(1):22–40.PubMedGoogle Scholar
  8. 123.
    Zardi L et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. 1987;6(8):2337–42.PubMedGoogle Scholar
  9. 124.
    Castellani P et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol. 2002;161(5):1695–7003.PubMedCrossRefGoogle Scholar
  10. 125.
    Pedretti M et al. Comparative immunohistochemistry of L19 and F16 in non-small cell lung cancer and mesothelioma: two human antibodies investigated in clinical trials in patients with cancer. Lung Cancer. 2009;64(1):28–33.Google Scholar
  11. 126.
    Berndorff D et al. Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res. 2005;11(19 Pt 2):7053s-63.PubMedCrossRefGoogle Scholar
  12. 127.
    Tijink BM et al. Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med. 2006;47(7): 1127–35.PubMedGoogle Scholar
  13. 128.
    Sauer S et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113(10):2265–74.PubMedCrossRefGoogle Scholar
  14. 129.
    Schliemann C et al. Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood. 2009;113(10):2275–83.PubMedCrossRefGoogle Scholar
  15. 130.
    Tosi DCA, Chiesa C, et al. Phase I dosimetric study of 131I-L19-SIP in solid tumors. AACR congress, Los Angeles, April 2007:Abstract 1659.Google Scholar
  16. 131.
    Bombardieri ECA, Chiesa C, et al. Phase I study with antifibronectin I-131 L19-SIP: first dosimetric and therapeutic results. SNM Meeting, Washington, June 2007:Abstract 1681.Google Scholar
  17. 132.
    Erba P, Sollini M, Boni R et al. Results of a phase I/II dose finding and efficacy study of the tumor-targeting 131-I-L19SIP human recombinant mini-antibody in patients with cancer. J Nucl Med. 2010;51 (Supplement 2):1153Google Scholar
  18. 133.
    Brack SS, Silacci M, Birchler M, Neri D. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res. 2006;12(10):3200–8.PubMedCrossRefGoogle Scholar
  19. 134.
    Kaczmarek J, Castellani P, Nicolo G, Spina B, Allemanni G, Zardi L. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer. 1994;59(1):11–6.PubMedCrossRefGoogle Scholar
  20. 135.
    Siri A, Carnemolla B, Saginati M, Leprini A, Casari G, Baralle F, et al. Human tenascin: primary structure, pre-mRNA splicing patterns and localization of the epitopes recognized by two monoclonal antibodies. Nucleic Acids Research. 1991;19(3):525–31.PubMedCrossRefGoogle Scholar
  21. 136.
    Wyss MT et al. Uptake of 18F-Fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J Nucl Med. 2007;48(4):608–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carina Mari Aparici
    • 1
  • Anca M. Avram
    • 2
  • Angel Soriano Castrejón
    • 3
  • Ryan A. Dvorak
    • 2
  • Paola Erba
    • 4
  • Jure Fettich
    • 5
  • José Manuel Cordero Garcia
    • 3
  • Victor Manuel Poblete García
    • 3
  • Randall Hawkins
    • 1
  • Marina Hodolic
    • 5
  • Prado Talavera Rubio
    • 3
  • Youngho Seo
    • 1
  • Ana María García Vicente
    • 3
  • John Patrick Pilkington Woll
    • 3
  • Ka Kit Wong
    • 2
    • 6
  1. 1.Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoUSA
  2. 2.Division of Nuclear Medicine/RadiologyUniversity of Michigan Medical CenterAnn ArborUSA
  3. 3.Department of Nuclear MedicineUniversitary General Hospital of Ciudad RealCiudad RealSpain
  4. 4.U.O. Medicina NucleareAzienda Ospedialiero-Universitaria PisanaPisaItaly
  5. 5.Department of Nuclear MedicineUniversity Medical Centre of LjubljanaLjubljanaSlovenia
  6. 6.Department of Nuclear MedicineVA Ann Arbor Healthcare SystemAnn ArborUSA

Personalised recommendations