Advertisement

Dosimetry Using SPECT-CT

  • Chiara Basile
  • Francesca Botta
  • Marta Cremonesi
  • Concetta De Cicco
  • Amalia Di Dia
  • Lucio Mango
  • Massimiliano Pacilio
  • Giovanni Paganelli
Chapter
  • 1.3k Downloads

Abstract

The role of dosimetry for radiation therapy is to guide the selection of the optimal treatment design, depending on radiation modality, parameter setting, and clinical needs of the single patient. The best balance between the irradiation of healthy tissues and target tissues allows improving the therapeutic ratio.

Keywords

Direct Monte Carlo Simulation Adaptive Thresholding Markov Random Field Model Target Radionuclide Therapy Absorb Dose Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37:1959–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Yin LS, Tang L, Hamarneh G, et al. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy. Phys Med Biol. 2010;55:237–46.Google Scholar
  3. 3.
    Delbeke D, Schöder H, Martin WH, Wahl RL. Hybrid Imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39:308–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.PubMedGoogle Scholar
  5. 5.
    Papavasileiou P, Divoli A, Hatziioannou K, Flux GD. The importance of the accuracy of image registration of SPECT images for 3D targeted radionuclide therapy dosimetry. Phys Med Biol. 2007;52:N539–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Sjögreen-Gleisner K, Rueckert D, Ljungberg M. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy. Phys Med Biol. 2009;54(20):6181–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Petoussi-Henss N, Zankl M, Nosske D. Estimation of patient dose from radiopharmaceuticals using voxel models. Cancer Biother Radiopharm. 2005;20:103–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Bolch WE. MC applied to The Monte Carlo method in nuclear medicine: current uses and future potential. J Nucl Med. 2010;5:337–9.CrossRefGoogle Scholar
  9. 9.
    Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med. 2008;38:321–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33:49–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Song H, Prideaux A, Du Y, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med. 2006;47:1985–94.PubMedGoogle Scholar
  12. 12.
    Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in 131I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2005;32:458–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Sauer S, Erba PA, Petrini M, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009; 113:2265–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Song H, Du Y, Sgouros G, Prideaux A, Frey E, Wahl RL. Therapeutic potential of 90Y- and 131I-labeled anti-CD20 monoclonal antibody in treating non-Hodgkin’s lymphoma with pulmonary involvement: a Monte Carlo-based dosimetric analysis. J Nucl Med. 2007;48:150–7.PubMedGoogle Scholar
  15. 15.
    Pacilio M, Betti M, Cicone F, et al. A theoretical dose-escalation study based on biological effective dose in radioimmunotherapy with 90Y-ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2010;37:862–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Cremonesi M, Botta F, Di Dia A, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010;54:37–51.Google Scholar
  17. 17.
    Garkavij M, Nickel M, Sjögreen-Gleisner K, et al. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116(4 Suppl): 1084–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Fabbri C, Sarti G, Cremonesi M, et al. Quantitative analysis [ of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm. 2009;24(1):145–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Fabbri C, Sarti G, Agostini M, Di Dia A, Paganelli G. SPECT/ CT 90Y-Bremsstrahlung images for dosimetry during therapy. Ecancermedicalscience. 2008; 2:n.106 www.ecancermedicalscience.com/tv.
  20. 20.
    Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703.Google Scholar
  21. 21.
    Botta F, Cremonesi M, Di Dia A, et al. Monte Carlo dosimetric and radiobiological evaluations for 131I-, 90Y- and 177Lu- locoregional treatments of high grade gliomas. Eur J Nucl Med Mol Imaging. 2009;36(S2):OP514.Google Scholar
  22. 22.
    Monsieurs M, Brans B, Bacher K, Van De Putte S, Dierckx RA, Thierens H. Patient dosimetry for neuroendocrine tumours based on 123I-MIBG pretherapy scans and 131I-MIBG post therapy scans. Eur J Nucl Med. 2002; 29:1581–87.CrossRefGoogle Scholar
  23. 23.
    Matthay KK, Quach A, Franc BL, et al. 131I-Metaiodo­benzylguanidine (131I-MIBG) double infusion with autologous stem cell rescue for neuroblastoma: a New Approaches to Neuroblastoma Therapy (NANT) phase I study. J Clin Oncol. 2009;27:1020–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Sangro B, Gil-Alzugaray B, Rodriguez J, et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer. 2008;1 12:1538–46.CrossRefGoogle Scholar
  25. 25.
    Ahmadzadehfar H, Sabet A, Biermann K, et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med. 2010;51:1206–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Cremonesi M, Ferrari M, Bartolomei M, et al. Radioembolisation with (90)Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35:2088–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Gulec SA, Sztejnberg ML, Siegel JA, Jevremovic T, Stabin M. Hepatic structural dosimetry in 90Y microsphere treatment: a Monte Carlo modeling approach based on lobular micro- anatomy. J Nucl Med. 2010;51:301–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Di Dia A, Botta F, Cremonesi M, et al. Dosimetric evaluation in 90Y-microspheres treatment of liver metastasis: comparison of planar, standard 3D-dosimetry and voxel dosimetry methods. Eur J Nucl Med Mol Imaging. 2010; Accepted as oral presentation of the EANM congress 2010.Google Scholar
  29. 29.
    Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006; 36:286–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Bianchi L, Baroli A, Marzoli L, Verusio C, Chiesa C, Pozzi L. Prospective dosimetry with 99mTc-MDP in metabolic radiotherapy of bone metastases with 153Sm-EDTMP. Eur J Nucl Med Mol Imaging. 2009;36:122–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Loeb DM, Hobbs RF, Okoli A, et al. Tandem dosing of samarium-153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer. 2010;116(23):5470–8.PubMedCrossRefGoogle Scholar

References

  1. 32.
    Brandes AA, Tosoni A, Spagnolli F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neuro-oncology. Neuro Oncol. 2008;10:361–7.PubMedCrossRefGoogle Scholar
  2. 33.
    Spaeth N, Wyss MT, Weber B, et al. Uptake of 18F-fluorocholine, 18F-luoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med. 2004;45:1931–8.PubMedGoogle Scholar
  3. 34.
    Astner S, Grosu A, Weber W, Wester H, Schwaiger M, Molls M. O-(2-[18F] fluorethyl)-L-tyrosine compared to L-(methyl-11C) methionine in positron emission tomography for tumor volume delineation of gliomas and metastases. Int J Radiat Oncol Biol Phys. 2005;63:S65.Google Scholar
  4. 35.
    Chen W, Silverman DHS, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47:904–11.PubMedGoogle Scholar
  5. 36.
    Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29:354–8.PubMedCrossRefGoogle Scholar
  6. 37.
    Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37:1959–85.PubMedCrossRefGoogle Scholar
  7. 38.
    Filippi L, Schillaci O, Santoni R, Manni C, Danieli R, Simonetti G. Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary braintumors by[ Tc99m] tetrofosmin. Cancer Biother Radiopharm. 2006;21:41–8.PubMedCrossRefGoogle Scholar
  8. 39.
    Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007;37:34–47.PubMedCrossRefGoogle Scholar
  9. 40.
    Ellis RJ, Zhou EH, Fu P, et al. Single photon emission computerized tomography with capromab pendetide plus computerized tomography image set co-registration independently predicts biochemical failure. J Urol. 2008;179:1768–73.PubMedCrossRefGoogle Scholar
  10. 41.
    Ellis RJ, Zhou H, Kaminsky DA, et al. Rectal morbidity after permanent prostate brachytherapy with dose escalation to biologic target volumes identified by SPECT/CT fusion. Brachytherapy. 2007;6:149–56.PubMedCrossRefGoogle Scholar
  11. 42.
    Jani AB, Spelbring D, Hamilton R, et al. Impact of radioimmunoscintigraphy on definition of clinical target volume for radiotherapy after prostatectomy. J Nucl Med. 2004; 45:238–46.PubMedGoogle Scholar
  12. 43.
    McGuire SM, Marks LB, Yin FF, Das SK. A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung. Phys Med Biol. 2010;55:403–16.PubMedCrossRefGoogle Scholar
  13. 44.
    Munawar I, Yaremko BP, Craig J, et al. Intensity modulated radiotherapy of non-small-cell lung cancer incorporating SPECT ventilation imaging. Med Phys. 2010;37:1863–72.PubMedCrossRefGoogle Scholar
  14. 45.
    Bates EL, Bragg CM, Wild JM, Hatton MQ, Ireland RH. Functional image-based radiotherapy planning for non-small cell lung cancer: a simulation study. Radiother Oncol. 2009;93:32–6.PubMedCrossRefGoogle Scholar
  15. 46.
    Yin LS, Tang L, Hamarneh G, et al. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy. Phys Med Biol. 2010;55:237–46.PubMedCrossRefGoogle Scholar
  16. 47.
    Gallucci G, Capobianco AM, Coccaro M, Venetucci A, Suriano V, Fusco V. Myocardial perfusion defects after radiation therapy and anthracycline chemotherapy for left breast cancer: a possible marker of microvascular damage. Three cases and review of the literature. Tumori. 2008;94:129–33.Google Scholar
  17. 48.
    Gayed IW, Liu HH, Yusuf SW, et al. The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer. J Nucl Med. 2006;47(11):1756–62.PubMedGoogle Scholar
  18. 49.
    Boivin JF, Hutchinson GB, Lubin JH, et al. Coronary artery disease mortality in patients treated for Hodgkin’s disease. Cancer. 1992;69:1241–7.PubMedCrossRefGoogle Scholar
  19. 50.
    Yaremko B, Riauka T, Robinson D, et al. Thresholding in PET images of static and moving targets. Phys Med Biol. 2005;50:5969–82.PubMedCrossRefGoogle Scholar
  20. 51.
    Vees H, Senthamizhchelvan S, Miralbell R, et al. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging. 2009;36:182–93.PubMedCrossRefGoogle Scholar
  21. 52.
    Yaremko B, Riauka T, Robinson D, et al. Threshold modification for tumour imaging in non-small-cell lung cancer using positron emission tomography. Nucl Med Commun. 2005;26:433–40.PubMedCrossRefGoogle Scholar
  22. 53.
    International Atomic Energy Agency. The role of PET/CT in radiation treatment planning for cancer patient treatment. 2008 IAEA-TECDOC-1603, pp. 33.Google Scholar
  23. 54.
    Geets X, Lee J A, Bol A, et al. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.Google Scholar
  24. 55.
    Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.PubMedCrossRefGoogle Scholar
  25. 56.
    Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005; 46:1342–8.PubMedGoogle Scholar
  26. 57.
    Jentzen W, Freudenberget L, Eising EG. Segmentation of PET volumes by iterative image thresholding. J Nucl Med. 2007;48:108–14.PubMedGoogle Scholar
  27. 58.
    Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18Ffluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.PubMedCrossRefGoogle Scholar
  28. 59.
    Hatt M, Lamare F, Boussion N, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol. 2007;52:3467–91.PubMedCrossRefGoogle Scholar
  29. 60.
    Montgomery D, Amira A, Zaidi H. Fully automated segmentation of oncological PET volumes using a combined multi-scale and statistical model. Med Phys. 2007;34:722–36.PubMedCrossRefGoogle Scholar
  30. 61.
    Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys. 2008;35:1207–13.PubMedCrossRefGoogle Scholar
  31. 62.
    Jannin P, Fitzpatrick JM, Hawkes DJ, Pennec X, Shahidi R, Vannier MW. Validation of medical image processing in image guided therapy. IEEE Trans Med Imaging. 2002;21:1445–9.PubMedCrossRefGoogle Scholar
  32. 63.
    Daisne JF, Dupers T, Weygand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.PubMedCrossRefGoogle Scholar
  33. 64.
    Basile C. Delineazione del volume neoplastico funzionalmente attivo per scope radioterapici: analisi e sviluppo di algoritmi per la segmentazione di immagini PET o SPECT. Biomedical Engineering Degree Thesis, University of Rome, Tor Vergata, pp. 122.Google Scholar
  34. 65.
    Pacilio M, Basile C, Shcherbinin S, et al. An innovative iterative thresholding algorithm for tumour segmentation and volumetric quantification on SPECT images: monte carlo-based methodology and validation. Submitted to Med Phys. 2010.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chiara Basile
    • 1
  • Francesca Botta
    • 2
    • 3
  • Marta Cremonesi
    • 2
    • 3
    • 4
  • Concetta De Cicco
    • 5
    • 3
  • Amalia Di Dia
    • 2
    • 3
  • Lucio Mango
    • 6
    • 7
  • Massimiliano Pacilio
    • 6
    • 8
  • Giovanni Paganelli
    • 5
    • 3
  1. 1.Medical Physics, Servizio di Fisica SanitariaAzienda Ospedaliera S. Camillo ForlaniniRomaItaly
  2. 2.Unità di Fisica SanitariaIstituto Europeo di OncologiaMilanoItaly
  3. 3.Medical Physics and Nuclear MedicineEuropean Institute of OncologyMilanoItaly
  4. 4.Medical Physics DepartmentIstituto Europeo di OncologiaMilanoItaly
  5. 5.Divisione di Medicina NucleareIstituto Europeo di OncologiaMilanoItaly
  6. 6.Servizio di Fisica SanitariaAzienda Ospedaliera S. Camillo ForlaniniRomaItaly
  7. 7.Medical PhysicsAzienda Ospedaliera S. Camillo ForlaniniRomaItaly
  8. 8.Medical Physics DepartmentAzienda Ospedaliera S. Camillo ForlaniniRomeItaly

Personalised recommendations