Radiation Therapy Planning Using SPECT-CT

  • Gianfranco Loi
  • Eugenio Inglese
  • Marco Krengli


Up to date image-guided radiotherapy extensively involves radiology, nuclear medicine and medical physics for accurate delineation of the volumes of interest (VOIs) and assists physicians to extract the most relevant clinical information. The aim is to precisely identify the gross tumor volume (GTV) and to use the available information to delineate the clinical target volume (CTV) that represents the microscopic invasion of the tumor. The ever-increasing amount of image data acquired (CT, MRI, SPECT and PET) requires the development of a robust image registration process for precise image alignment. This is a prerequisite for obtaining imaging useful for precise target identification that employs multiple modalities with morphological, functional and biological information. The integration of these multiple images may allow identifying target and non-target structures better than using each single imaging modality [1–3].


Sentinel Node Clinical Target Volume Gross Tumor Volume Brain Glioma Relevant Clinical Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. 1.
    Weber DA, Ivanovic M. Correlative image registration. Semin Nucl Med. 1994;24:311.PubMedCrossRefGoogle Scholar
  2. 2.
    Israel O, Keidar Z, Iosilevsky G, et al. The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med. 2001;24:191.CrossRefGoogle Scholar
  3. 3.
    Shreve PD. Adding structure to function. J Nucl Med. 2000;41:1380.PubMedGoogle Scholar
  4. 4.
    Hutton BF, Braun M, Thurfjell L, Lau DYH. Image registration: an essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging. 2002;29:559.PubMedCrossRefGoogle Scholar
  5. 5.
    Maintz JB, Viergever MA. A survey of medical imaging registration. Med Image Anal. 1998;2:1.PubMedCrossRefGoogle Scholar
  6. 6.
    Bocher M, Balan A, Krausz Y, et al. Gamma camera mounted anatomical x-ray tomography: technology system characteristics and first images. Eur J Nucl Med. 2000;27:619.PubMedCrossRefGoogle Scholar
  7. 7.
    Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated-dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med. 2000;41:1364.PubMedGoogle Scholar
  8. 8.
    Beyer T, Townsend D, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369.PubMedGoogle Scholar
  9. 9.
    Krausz Y, Keidar Z, Kogan E, et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol (Oxf). 2003;59:565–73.CrossRefGoogle Scholar
  10. 10.
    Karger CP, Hipp P, Henze M, et al. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT. Phys Med Biol. 2003;48:211–21.PubMedCrossRefGoogle Scholar


  1. 11.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  2. 12.
    Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60:166–93.PubMedCrossRefGoogle Scholar
  3. 13.
    Combs SE, Gutwein S, Schulz-Ertner D, et al. Temozolomide combined with irradiation as postoperative treatment of primary glioblastoma multiforme. Phase I/II study. Strahlenther Onkol. 2005;181:372–7.PubMedCrossRefGoogle Scholar
  4. 14.
    Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007;37:34–47.PubMedCrossRefGoogle Scholar
  5. 15.
    Aydin H, Sillenberg I, Von Lieven H. Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol. 2001;177:424–31.PubMedCrossRefGoogle Scholar
  6. 16.
    Oppitz U, Maessen D, Zunterer H, et al. 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol. 1999;53:53–7.PubMedCrossRefGoogle Scholar
  7. 17.
    Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18 F-FLT PET: comparison with 18 F-FDG. J Nucl Med. 2005;46:945–52.PubMedGoogle Scholar
  8. 18.
    Floeth FW, Pauleit D, Wittsack HJ, et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18 F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg. 2005;102:318–27.PubMedCrossRefGoogle Scholar
  9. 19.
    Grosu A, Weber W, Feldmann J, et al. First experience with I-123-alphamethyl-tyrosine SPECT in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys. 2000;47:517–26.PubMedCrossRefGoogle Scholar
  10. 20.
    Baldari S, Restifo Pecorella S, Cosentino S, et al. Investigation of brain tumors with 99mTc-MIBI SPET. J Nucl Med. 2002;46:330–45.Google Scholar
  11. 21.
    Goethals I, De Winter O, Dierckx R, et al. False-negative 99mTc-MIBI scintigraphy in histopathologically proved recurrent high-grade oligodendroglioma. Clin Nucl Med. 2003;28:299–301.PubMedGoogle Scholar
  12. 22.
    Ak I, Gulbas Z, Altinel F, et al. 99mTc-MIBI uptake and its relation to the proliferative potential of brain tumors. Clin Nucl Med. 2003;28:29–33.PubMedCrossRefGoogle Scholar
  13. 23.
    Soler C, Beauchesne P, Maatougui K. Technetium-99 sestamibi brain singlephoton emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med. 1998;25:1649–57.PubMedCrossRefGoogle Scholar
  14. 24.
    Yamamoto Y, Nishiyama Y, Toyama Y, et al. 99mTc-MIBI and 201Tl SPET in the detection of recurrent brain tumours after radiation therapy. Nucl Med Commun. 2002;23:1183–90.PubMedCrossRefGoogle Scholar
  15. 25.
    Beauchesne P, Pedeux R, Boniol M, et al. 99mTc-sestamibi brain SPECT after chemoradiotherapy is prognostic of survival in patients with high-grade glioma. J Nucl Med. 2004;45:409–13.PubMedGoogle Scholar
  16. 26.
    Prigent-Le Jeune F, Dubois F, Perez S, et al. Technetium-99 m sestamibi brain SPECT in the follow-up of glioma for evaluation of response to chemotherapy: first results. Eur J Nucl Med Mol Imaging. 2004;31:714–9.PubMedCrossRefGoogle Scholar
  17. 27.
    Lamy-Lhullier C, Dubois F, Blond S, et al. Importance of cerebral tomoscintigraphy using technetium-labeled sestamibi in the differential diagnosis of current tumor vs. radiation necrosis in subtentorial glial tumors in the adult. Neurochirurgie. 1999;45:110–7.PubMedGoogle Scholar
  18. 28.
    Maffioli L, Gasparini M, Chiti A, et al. Clinical role of technetium-99 m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med. 1996;23:308–11.PubMedCrossRefGoogle Scholar
  19. 29.
    Nagamachi S, Jinnouchi S, Nabeshima K, et al. The correlation between 99mTc-MIBI uptake and MIB-1 as a nuclear proliferation marker in glioma – a comparative study with 201Tl. Neuroradiology. 2001;43:1023–30.PubMedCrossRefGoogle Scholar
  20. 30.
    Palumbo B, Lupattelli M, Pelliccioli GP, et al. Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1 H-MRS) to assess glioma recurrence after radiotherapy. Q J Nucl Med Mol Imaging. 2006;50:88–93.PubMedGoogle Scholar
  21. 31.
    Prigent-Le Jeune FP, Dubois F, Blond S, et al. Sestamibi technetium-99 m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol. 2006;77:177–83.CrossRefGoogle Scholar
  22. 32.
    Krengli M, Loi G, Sacchetti G, Manfredda I, Gambaro G, Brambilla M, et al. Delineation of target volume for radiotherapy of high-grade glioma by 99mTc-MIBI SPECT and MRI fusion. Strahlenther Onkol. 2007;183:689–94.PubMedCrossRefGoogle Scholar
  23. 33.
    Pfluger T, Vollmar C, Wismuller A, et al. Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. J Nucl Med. 2000;41:1823–9.PubMedGoogle Scholar
  24. 34.
    Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47:551–60.PubMedCrossRefGoogle Scholar


  1. 35.
    Taylor A, Rockall AG, Reznek RH, et al. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1604–12.PubMedCrossRefGoogle Scholar
  2. 36.
    Shih HE, Harisinghani M, Zietman A, et al. Mapping of nodal disease in locally advanced prostate cancer: rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy. Int J Radiat Oncol Biol Phys. 2005;63:1262–9.PubMedCrossRefGoogle Scholar
  3. 37.
    Wawroschek F, Vogt H, Wengenmair H, et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int. 2003;70:303–10.PubMedCrossRefGoogle Scholar
  4. 38.
    Krengli M, Ballarè A, Cannillo B, Rudoni M, Kocjancic E, Loi G, et al. Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer. Int J Radiat Oncol Biol Phys. 2006;66:1100–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gianfranco Loi
    • 1
  • Eugenio Inglese
    • 1
  • Marco Krengli
    • 1
  1. 1.U. O. Medicina NucleareOspedale Maggiore della Carità di NovaraNovaraItaly

Personalised recommendations