Skip to main content

Disorders of Haem Biosynthesis

  • Chapter
Book cover Inborn Metabolic Diseases

Abstract

X-Linked sideroblastic anaemia is due to a deficiency of the erythroid form of the first enzyme in the haem biosynthetic pathway, 5-aminolevulinic acid synthase. Characteristics of the disease include adult-onset anaemia, ineffective erythropoiesis with formation of ring sideroblasts, iron accumulation and pyridoxine responsiveness. Porphyrias are metabolic disorders that are due to altered activity of other enzymes of this pathway, and are associated with striking accumulations and excess excretion of haem pathway intermediates and their oxidised products. The three most common porphyrias, porphyria cutanea tarda, acute intermittent porphyria and erythropoietic protoporphyria, differ considerably from each other. Acute intermittent porphyria presents with acute neurovisceral symptoms and can be aggravated by certain drugs, hormones and nutritional changes, and is treated with intravenous haemin and carbohydrate loading. The skin is affected in the other two, although the skin manifestations and methods of diagnosis and treatment are very different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granick S (1966) The induction in vitro of the synthesis of d-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem 241:1359–137

    PubMed  CAS  Google Scholar 

  2. Anderson KE, Freddara U, Kappas A (1982) Induction of hepatic cytochrome P-450 by natural steroids: relationships to the induction of d-aminolevulinate synthase and porphyrin accumulation in the avian embryo. Arch Biochem Biophys 217:597–608

    Article  PubMed  CAS  Google Scholar 

  3. Harigae H, Furuyama K (2010) Hereditary sideroblastic anemia: pathophysiology and gene mutations. Int J Hematol 92:425–431

    Article  PubMed  CAS  Google Scholar 

  4. Bekri S, May A, Cotter PD et al. (2003) A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood 102;698–704

    Article  PubMed  CAS  Google Scholar 

  5. Cazzola M, May A, Bergamaschi G et al. (2000) Familial-skewed Xchromosome inactivation as a predisposing factor for late-onset Xlinked sideroblastic anemia in carrier females. Blood 96:4363–4365

    PubMed  CAS  Google Scholar 

  6. Cazzola M, May A, Bergamaschi G et al. (2002) Absent phenotypic expression of X-linked sideroblastic anemia in one of 2 brothers with a novel ALAS2 mutation. Blood 100:4236–4238

    Article  PubMed  CAS  Google Scholar 

  7. Puy H, Gouya L, Deybach JC (2010) Porphyrias. Lancet 375:924–937.9. Sarkany RP (2008) Making sense of the porphyrias. Photodermatol Photoimmunol Photomed 24:102–108

    Article  PubMed  CAS  Google Scholar 

  8. Anderson KE (2003) The porphyrias. In: Zakim D, Boyer T (eds) Hepatology, chap 11. Saunders, Philadelphia, pp 291–346

    Google Scholar 

  9. Anderson KE, Bloomer JR, Bonkovsky HL et al. (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142:439–450

    PubMed  Google Scholar 

  10. Poh-Fitzpatrick MB, Lamola AA (1976) Direct spectrophotometry of diluted erythrocytes and plasma: a rapid diagnostic method in primary and secondary porphyrinemias. J Lab Clin Med 87:362–370

    PubMed  CAS  Google Scholar 

  11. Poh-Fitzpatrick MB (1980) A plasma porphyrin fluorescence marker for variegate porphyria. Arch Dermatol 116:543–547

    Article  PubMed  CAS  Google Scholar 

  12. Akagi R, Kato N, Inoue R et al. (2006 d-Aminolevulinate dehydratase (ALAD) porphyria: The first case in North America with two novel ALAD mutations. Mol Genet Metab 87:329–336

    Article  PubMed  CAS  Google Scholar 

  13. Inoue R, Akagi R (2008) Co-synthesis of human delta-aminolevulinate dehydratase (ALAD) mutants with the wild-type enzyme in cell-free system – critical importance of conformation on enzyme activity. J Clin Biochem Nutr 43:143–153

    Article  PubMed  Google Scholar 

  14. Shimizu Y, Ida S, Naruto H, Urata G (1978) Excretion of porphyrins in urine and bile after the administration of delta-aminolevulinic acid. J Lab Clin Med 92:795–802

    PubMed  CAS  Google Scholar 

  15. Pischik E, Kauppinen R (2009) Neurological manifestations of acute intermittent porphyria. Cell Mol Biol (Noisy-le-grand) 55:72–83

    CAS  Google Scholar 

  16. Maramattom BV, Zaldivar RA, Glynn SM, Eggers SD, Wijdicks EF (2005) Acute intermittent porphyria presenting as a diffuse encephalopathy. Ann Neurol 57:581–584

    Article  PubMed  Google Scholar 

  17. Sardh E, Andersson DE, Henrichson A, Harper P (2009) Porphyrin precursors and porphyrins in three patients with acute intermittent porphyria and end-stage renal disease under different therapy regimes. Cell Mol Biol (Noisy-le-grand) 55:66–71

    CAS  Google Scholar 

  18. Kauppinen R, Mustajoki P (1992) Prognosis of acute porphyria: occurrence of acute attacks, precipitating factors, and associated diseases. Medicine 71:1–13

    PubMed  CAS  Google Scholar 

  19. Andant C, Puy H, Bogard C et al. (2000) Faivre J, Soule JC, Nordmann Y, Deybach JC Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors. J Hepatol 32:933–939

    Article  PubMed  CAS  Google Scholar 

  20. Human Gene Mutation Database (www.hgmd.org)

  21. Solis C, Martinez-Bermejo A, Naidich TP et al. (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61:1764–1770

    Article  PubMed  Google Scholar 

  22. Deacon AC, Peters TJ (1998) Identification of acute porphyria: evaluation of a commercial screening test for urinary porphobilinogen. Ann Clin Biochem 35:726–732

    PubMed  CAS  Google Scholar 

  23. Whatley SD, Mason NG, Woolf JR et al. (2009) Diagnostic strategies for autosomal dominant acute porphyrias: retrospective analysis of 467 unrelated patients referred for mutational analysis of the HMBS, CPOX, or PPOX gene. Clin Chem 55:1406–1414

    Article  PubMed  CAS  Google Scholar 

  24. Tenhunen R, Mustajoki P (1998) Acute porphyria: treatment with heme. Semin Liver Dis 18:53–55

    Article  PubMed  CAS  Google Scholar 

  25. Bonkovsky HL, Healey JF, Lourie AN, Gerron GG (1991) Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol 86:1050–1056

    PubMed  CAS  Google Scholar 

  26. Hahn M, Gildemeister OS, Krauss GL et al. (1997) Effects of new anticonvulsant medications on porphyrin synthesis in cultured liver cells: potential implications for patients with acute porphyria. Neurology 49:97–106

    PubMed  CAS  Google Scholar 

  27. Anderson KE (2003) Approaches to treatment and prevention of human porphyrias. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, chap 94, vol 14. Academic Press, San Diego, pp 247–284

    Google Scholar 

  28. Barone GW, Gurley BJ, Anderson KE et al. (2001) The tolerability of newer immunosuppressive medications in a patient with acute intermittent porphyria. J Clin Pharmacol 41:113–115

    Article  PubMed  CAS  Google Scholar 

  29. Wahlin S, Harper P, Sardh E et al. (2010) Combined liver and kidney transplantation in acute intermittent porphyria. Transplant Int 23;e18–21

    Article  Google Scholar 

  30. Seth AK, Badminton MN, Mirza D et al. (2007) Liver transplantation for porphyria: who, when, and how? Liver Transplant 13:1219–1227

    Article  Google Scholar 

  31. Anderson KE, Spitz IM, Bardin CW, Kappas A (1990) A GnRH analogue prevents cyclical attacks of porphyria. Arch Intern Med 150:1469-1474

    Article  PubMed  CAS  Google Scholar 

  32. Verstraeten L, Regemorter v N, Pardou A et al. (1993) Biochemical diagnosis of a fatal case of Gunther’s disease in a newborn with hydrops-fetalis. Eur J Clin Chem Clin Biochem 31:121–128

    PubMed  CAS  Google Scholar 

  33. Sassa S, Akagi R, Nishitani C et al. (2002) Late-onset porphyrias: what are they? Cell Mol Biol (Noisy-le-grand) 48:97–101

    CAS  Google Scholar 

  34. Ged C, Moreau-Gaudry F, Richard E et al. (2009) Congenital erythropoietic porphyria: mutation update and correlations between genotype and phenotype. Cell Mol Biol (Noisy-le-grand) 55:53–60

    CAS  Google Scholar 

  35. Phillips JD, Steensma DP, Pulsipher MA et al. (2007) Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 109:2618–2621

    Article  PubMed  CAS  Google Scholar 

  36. Poh-Fitzpatrick MB, Piomelli S, Seaman C, Skolnick LM (1988) Congenital erythropoietic porphyria: complete suppression of symptoms by long-term high-level transfusion with deferoxamine infusion iron rescue. In: Orfanos CE, Stadler R, Gollnick H (eds) Dermatology in five continents. Springer, Berlin Heidelberg New York, pp 876–879

    Google Scholar 

  37. Guarini L, Piomelli S, Poh-Fitzpatrick MB (1994) Hydroxyurea in congenital erythropoietic porphyria (letter). N Engl J Med 330:1091–1092

    Article  PubMed  CAS  Google Scholar 

  38. Fritsch C, Lang K, Bolsen K et al. (1998) Congenital erythropoietic porphyria. Skin Pharmacol Appl Skin Physiol 11:347–357

    Article  PubMed  CAS  Google Scholar 

  39. Faraci M, Morreale G, Boeri E et al. (2008) Unrelated HSCT in an adolescent affected by congenital erythropoietic porphyria. Pediatr Transplant 12:117–120

    Article  PubMed  CAS  Google Scholar 

  40. Zix-Kieffer I, Langer B, Eyer D et al. (1996) Successful cord blood stem cell transplantation for congenital erythropoietic porphyria (Gunther’s disease). Bone Marrow Transplant 18;217–220

    PubMed  CAS  Google Scholar 

  41. Geronimi F, Richard E, Lamrissi-Garcia I et al. (2003) Lentivirusmediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med 81:310–320

    PubMed  CAS  Google Scholar 

  42. Elder GH (2003) Porphyria cutanea tarda and related disorders. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, Part II, vol 14, chap 88. Academic Press, San Diego, pp 67–92

    Google Scholar 

  43. Jalil S, Grady JJ, Lee C, Anderson KE (2010) Associations among behavior-related susceptibility factors in porphyria cutanea tarda. Clin Gastroenterol Hepatol 8:297–302

    Article  PubMed  Google Scholar 

  44. Phillips JD, Bergonia HA, Reilly CA et al. (2007) A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A 104:5079–5084

    Article  PubMed  CAS  Google Scholar 

  45. Egger NG, Goeger DE, Anderson KE (1996) Effects of chloroquine in hematoporphyrin-treated animals. Chem Biol Interact 102:69–78

    Article  PubMed  Google Scholar 

  46. Phillips JD, Whitby FG, Stadtmueller BM et al. (2007) Two novel uroporphyrinogen decarboxylase (URO-D) mutations causing hepatoerythropoietic porphyria (HEP). Transl Res 149:85–91

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong DK, Sharpe PC, Chambers CR et al. (2004) Hepatoerythropoietic porphyria: a missense mutation in the UROD gene is associated with mild disease and an unusual porphyrin excretion pattern. Br J Dermatol 151:920–923

    Article  PubMed  CAS  Google Scholar 

  48. Meissner P, Hift RJ, Corrigall A (2003) Variegate porphyria. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14, chap 89. Academic Press, San Diego, pp 93–120

    Google Scholar 

  49. Meissner P, Adams P, Kirsch R (1993) Allosteric inhibition of human lymphoblast and purified porphobilinogen deaminase by protoporphyrinogen and coproporphyrinogen. A possible mechanism for the acute attack of variegate porphyria. J Clin Invest 91:1436–1444

    Article  PubMed  CAS  Google Scholar 

  50. Poh-Fitzpatrick MB (1980) A plasma porphyrin fluorescence marker for variegate porphyria. Arch Dermatol 116:543–547

    Article  PubMed  CAS  Google Scholar 

  51. Poh-Fitzpatrick MB, Lamola AA (1976) Direct spectrofluorometry of diluted erythrocytes and plasma: a rapid diagnostic method in primary and secondary porphyrinemias. J Lab Clin Med 87:362–370

    PubMed  CAS  Google Scholar 

  52. Da Silva V, Simonin S, Deybach JC et al. (1995) Variegate porphyria: diagnostic value of fluorometric scanning of plasma porphyrins. Clin Chim Acta 238:163–168

    Article  PubMed  CAS  Google Scholar 

  53. Long C, Smyth SJ, Woolf J et al. (1993) Detection of latent variegate porphyria by fluorescence emission spectroscopy of plasma. Br J Dermatol 129:9–13

    Article  PubMed  CAS  Google Scholar 

  54. Holme SA, Worwood M, Anstey AV et al. (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110:4108–4110

    Article  PubMed  CAS  Google Scholar 

  55. Cox TM (2003) Protoporphyria. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14, chap 90. Academic Press, San Diego,pp 121–149

    Google Scholar 

  56. Holme SA, Anstey AV, Finlay AY et al. (2006) Erythropoietic protoporphyria in the U.K.: clinical features and effect on quality of life. Br J Dermatol 155:574–581

    Article  PubMed  CAS  Google Scholar 

  57. Jong CT, Finlay AY, Pearse AD et al. (2008) The quality of life of 790 patients with photodermatoses. Br J Dermatol 159:192–197

    Article  PubMed  CAS  Google Scholar 

  58. Muley SA, Midani HA, Rank JM et al. (1998) Neuropathy in erythropoietic protoporphyrias. Neurology 51:262–265

    PubMed  CAS  Google Scholar 

  59. Whatley SD, Ducamp S, Gouya L et al. (2008) C-Terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 83:408–414

    Article  PubMed  CAS  Google Scholar 

  60. Whatley SD, Mason NG, Holme SA et al. (2010) Molecular epidemiology of erythropoietic protoporphyria in the United Kingdom. Br J Dermatol 162:642–646

    Article  PubMed  CAS  Google Scholar 

  61. Went LN, Klasen EC (1984) Genetic aspects of erythropoietic protoporphyria. Ann Hum Genet 48:105–117

    Article  PubMed  CAS  Google Scholar 

  62. Gouya L, Puy H, Robreau AM, Bourgeois M et al. (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30:27–28

    Article  PubMed  CAS  Google Scholar 

  63. Holme SA, Whatley SD, Roberts AG et al. (2009) Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Invest Dermatol 129:599–605

    Article  PubMed  CAS  Google Scholar 

  64. Goodwin RG, Kell WJ, Laidler P et al. (2006) Photosensitivity and acute liver injury in myeloproliferative disorder secondary to late-onset protoporphyria caused by deletion of a ferrochelatase gene in hematopoietic cells. Blood 107:60–62

    Article  PubMed  CAS  Google Scholar 

  65. Harms J, Lautenschlager S, Minder CE, Minder EI (2009) An alphamelanocyte-stimulating hormone analogue in erythropoietic protoporphyria. N Engl J Med 360:306–307

    Article  PubMed  CAS  Google Scholar 

  66. Harms JH, Lautenschlager S, Minder CE, Minder EI (2009) Mitigating photosensitivity of erythropoietic protoporphyria patients by an agonistic analog of alpha-melanocyte stimulating hormone. Photochem Photobiol 85:1434–1439

    Article  PubMed  CAS  Google Scholar 

  67. Minder EI, Schneider-Yin X, Steurer J, Bachmann LM (2009) A systematic review of treatment options for dermal photosensitivity in erythropoietic protoporphyria. Cell Mol Biol (Noisy-le-grand) 55:84–97

    CAS  Google Scholar 

  68. Do KD, Banner BF, Katz E et al. (2002) Benefits of chronic plasmapheresis and intravenous heme-albumin in erythropoietic protoporphyria after orthotopic liver transplantation. Transplantation 73:469–472

    Article  PubMed  Google Scholar 

  69. Rand EB, Bunin N, Cochran W et al. (2006) Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics 118:e1896–1899

    Article  PubMed  Google Scholar 

  70. Wahlin S, Harper P (2010) The role for BMT in erythropoietic protoporphyria. Bone Marrow Transplant 45:393–394

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lourenço, C.M., Lee, C., Anderson, K.E. (2012). Disorders of Haem Biosynthesis. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics