Abstract
We introduce a novel algorithm for actin filament segmentation in a 2D TIRFM image sequence. We treat the 2D time-lapse sequence as a 3D image volume and propose an over-grown active surface model to segment the body of a filament on all slices simultaneously. In order to locate the two ends of the filament on the over-grown surface, a novel 2D spatiotemporal domain is created based on the resulting surface. Two 2D active contour models deform in this domain to locate the two filament ends accurately. Evaluation on TIRFM image sequences with very low SNRs and comparison with a previous method demonstrate the accuracy and robustness of this approach.
Chapter PDF
Similar content being viewed by others
References
Fujiwara, I., Vavylonis, D., Pollard, T.D.: Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy. Proc. Natl. Acad. Sci. USA 104, 8827–8832 (2007)
Kuhn, J.R., Pollard, T.D.: Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 88, 1387–1402 (2005)
Li, H., Shen, T., Smith, M., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. In: Proc. ISBI (2009)
Hadjidemetriou, S., Toomre, D., Duncan, J.: Motion tracking of the outer tips of microtubules. Medical Image Analysis 12, 689–702 (2008)
Saban, M., Altinok, A., Peck, A., Kenney, C., Feinstein, S., Wilson, L., Rose, K., Manjunath, B.: Automated tracking and modeling of microtubule dynamics. In: Proc. ISBI, vol. 1, pp. 1032–1035 (2006)
Sargin, M.E., Altinok, A., Kiris, E., Feinstein, S.C., Wilson, L., Rose, K., Manjunath, B.S.: Tracing microtubules in live cell images. In: Proc. ISBI (2007)
Smal, I., Draegestein, K., Galjart, N., Niessen, W., Meijering, E.: Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis. IEEE Trans. on Medical Imaging 27, 789–804 (2008)
Kong, K., Marcus, A., Giannakakou, P., Wang, M.: Using particle filter to track and model microtubule dynamics. In: Proc. ICIP, vol. 5, pp. 517–520 (2007)
Li, H., Shen, T., Vavylonis, D., Huang, X.: Actin filament tracking based on particle filters and stretching open active contour models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 673–681. Springer, Heidelberg (2009)
Cohen, L.D., Cohen, I.: Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 1131–1147 (1991)
Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 239–256 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, H., Shen, T., Vavylonis, D., Huang, X. (2010). Actin Filament Segmentation Using Spatiotemporal Active-Surface and Active-Contour Models. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15705-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-15705-9_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15704-2
Online ISBN: 978-3-642-15705-9
eBook Packages: Computer ScienceComputer Science (R0)