Skip to main content

Training Strategy of Semantic Concept Detectors Using Support Vector Machine in Naked Image Classification

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6297))

Included in the following conference series:

  • 1435 Accesses

Abstract

Recently, in the Web and online social networking sites, the classification and filtering for naked images have been receiving a significant amount of attention. In our previous work, semantic feature in the aforementioned application is found to be more useful compared to using only low-level visual feature. In this paper, we further investigate the effective training strategy when making use of Support Vector Machine (SVM) for the purpose of generating semantic concept detectors. The proposed training strategy aims at increasing the performances of semantic concept detectors by boosting the ’naked’ image classification performance. Extensive and comparative experiments have been carried out to access the effectiveness of proposed training strategy. In our experiments, each of the semantic concept detectors is trained with 600 images and tested with 300 images. In addition, 3 data sets comprising of 600 training images and 1000 testing images are used to test the naked image classification performance. The experimental results show that the proposed training strategy allows for improving semantic concept detection performance compared to conventional training strategy in use of SVM. In addition, by using our training strategy, one can improve the overall naked image classification performance when making use of semantic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, J.S., Kuo, Y.-M., Chung, P.-C., Chen, E.-L.: Naked Image Detection based on Adaptive and Extensible Skin Color Model. Pattern Recognition 40, 2261–2270 (2007)

    Article  MATH  Google Scholar 

  2. Shih, J.-L., Lee, C.-H., Yang, C.-S.: An Adult Image Identification System Employing Image Retrieval Technique. Pattern Recognition Letters 28, 2367–2374 (2007)

    Article  Google Scholar 

  3. Kim, W.I., Lee, H.-K., Yoo, S.J., Baik, S.W.: Neural Network based Adult Image Classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 481–486. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Kim, S.M., Min, H.S., Jeon, J.H., Ro, Y.M., Han, S.W.: Malicious Content Filtering based on Semantic Features. In: The ACM International Conference Proceeding (2009)

    Google Scholar 

  5. Yang, S.J., Kim, S.-K., Ro, Y.M.: Semantic Home Photo Categorization. IEEE Tran. On Circuits and Systems for Video Technology 17(3), 324–335 (2007)

    Article  Google Scholar 

  6. Boutell, M., Choudhury, A., Luo, J., Brown, C.M.: Using Semantic Features for Scene Classification: How Good do They Need to Be? In: IEEE International Conference on Multimedia and Expo, ICME (2006)

    Google Scholar 

  7. Naphade, M., Smith, J.R., Tesic, J., Chang, S.F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale Concept Ontology for Multimedia. IEEE Multimedia 13(3), 86–91 (2006)

    Article  Google Scholar 

  8. Li, X., Snoek, C.G.M.: Visual Categorization with Negative Examples for Free. In: The ACM Multimedia Conference, pp. 661–664 (2009)

    Google Scholar 

  9. Nilsson, R., Pena, J.M., Bjokegren, J., Tegner, J.: Evaluating Feature Selection for SVMs in High Dimensions. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 719–726. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dollar, P., Tu, Z., Tao, H., Belongie, S.: Feature Mining for Image Classification. In: IEEE Conference on In Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

    Google Scholar 

  11. Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imbalanced Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

    Google Scholar 

  12. Snoek, C.G.M., Sande, K.E.A., Rooij, O., et al.: The MediaMill TRECVID 2008 Semantic Video Search Engine. In: Proceedings of TRECVID Workshop (2008)

    Google Scholar 

  13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridege (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeon, J., Choi, J.Y., Kim, S., Min, H., Han, S., Ro, Y.M. (2010). Training Strategy of Semantic Concept Detectors Using Support Vector Machine in Naked Image Classification . In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15702-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15702-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15701-1

  • Online ISBN: 978-3-642-15702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics