Skip to main content

FEM Based 3D Tumor Growth Prediction for Kidney Tumor

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6326))

Included in the following conference series:

Abstract

It is important to predict the tumor growth so that appropriate treatment can be planned especially in the early stage. In this paper, we propose a finite element method (FEM) based 3D tumor growth prediction system using longitudinal kidney tumor images. To the best of our knowledge, this is the first kidney tumor growth prediction system. The kidney tissues are classified into three types: renal cortex, renal medulla and renal pelvis. The reaction-diffusion model is applied as the tumor growth model. Different diffusion properties are considered in the model: the diffusion for renal medulla is considered as anisotropic, while those of renal cortex and renal pelvis are considered as isotropic. The FEM is employed to simulate the diffusion model. Automated estimation of the model parameters is performed via optimization of an objective function reflecting overlap accuracy, which is optimized in parallel via HOPSPACK (hybrid optimization parallel search). An exponential curve fitting based on the non-linear least squares method is used for multi-time point model parameters prediction. The proposed method was tested on the seven time points longitudinal kidney tumor CT studies from two patients with five tumors. The experimental results showed the feasibility and efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society, http://www.cancer.org/docroot/cri/content/cri_2_4_1x_what_are_the_key_statistics_for_kidney_cancer_22.asp

  2. Swanson, K., Bridge, C., Murray, J.D., Alvord, E.C.: Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216(1), 1–10 (2003)

    Article  Google Scholar 

  3. Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24(10), 1334–1346 (2005)

    Article  Google Scholar 

  4. Mallet, D.G., Pillis, L.G.D.: A cellular automata model of tumor-immune interactions. Journal of Theoretical Biology 239(3), 334–350 (2006)

    Article  MathSciNet  Google Scholar 

  5. Mohamed, A., Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 400–408. Springer, Heidelberg (2005)

    Google Scholar 

  6. Lloyd, B.A., Szczerba, D., Székely, G.: A Coupled Finite Element Model of Tumor Growth and Vascularization. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 874–881. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Pathmanathan, P., Gavaghan, D.J., Whiteley, J.P., Chapman, S.J., Brady, J.M.: Predicting tumor location by modeling the deformation of the breast. IEEE Trans. Biomed. Eng. 55(10), 2471–2480 (2008)

    Article  Google Scholar 

  8. Chandarana, H., Hecht, E., Taouli, B., Sigmund, E.E.: Diffusion Tensor Imaging of In Vivo Human Kidney at 3T: Robust anisotropy measurement in the medulla. Proc. Intl. Soc. Mag. Reson. Med. 16, 494 (2008)

    Google Scholar 

  9. Kassouf, W., Aprikian, A.G., Laplante, M., Tanguay, S.: Natural history of renal masses followed expectantly. J. Urol. 171, 111–113 (2004)

    Article  Google Scholar 

  10. Anonymous

    Google Scholar 

  11. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3-D surface construction algorithm. In: Proc. Siggraph 1987, C. Graphics, vol. 21, pp. 163–170 (July 1987)

    Google Scholar 

  12. Fang, Q.: ISO2Mesh: a 3D surface and volumetric mesh generator for matlab/octave, http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home

  13. Udupa, J.K., Leblanc, V.R., Zhuge, et al.: A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics 30(2), 75–87 (2006)

    Article  Google Scholar 

  14. Notohamiprodjo, M., Glaser, C., Herrmann, K.A., et al.: Diffusion Tensor Imaging of the Kidney With Parallel Imaging: Initial Clinical Experience. Investigative Radiology 43(10), 677–685 (2008)

    Article  Google Scholar 

  15. Hanhart, A.l., Gobbert, M.K., Izu, L.T.: A memory-efficient finite element method for systems of reaction-diffusion equations with non-smooth forcing. Journal of Computational and Applied Mathematics 169, 431–458 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Laird, A.K.: Dynamics of tumor growth. Br. J. of Cancer 18, 490–502 (1964)

    Google Scholar 

  17. Tracqui, P., Cruywagen, G., Woodward, D., Bartoo, G., Murray, J., Alvord Jr., E.: A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal growth. Cell Proliferation 28(1), 17–31 (1995)

    Article  Google Scholar 

  18. Zacharaki, E.I., Shen, D., Lee, S.-K., Davatzikos, C.: ORBIT: A Multiresolution Framework for Deformable Registration of Brain Tumor Images. IEEE Transactions on Medical Imaging 27(8) (August 2008)

    Google Scholar 

  19. Hoge, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56, 793–825 (2008)

    Article  MathSciNet  Google Scholar 

  20. West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature 413, 628–631 (2001)

    Article  Google Scholar 

  21. Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboeck, T.S.: Does tumor growth follow a “universal law”? J. Theor. Biol. 225(2), 147–151 (2003)

    Article  MathSciNet  Google Scholar 

  22. Plantenga, T.D.: HOPSPACK 2.0 User Manual, TECHREPORT SAND2009-6265, Sandia National Laboratories, Albuquerque, NM and Livermore, CA (October 2009)

    Google Scholar 

  23. Gray, G.A., Kolda, T.G.: Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search for derivative-free optimization. ACM Transactions on Mathematical Software 32, 485–507 (2006)

    Article  MathSciNet  Google Scholar 

  24. Kelley, C.T.: Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics 18 (1999), ISBN: 0-89871-433-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, X., Summers, R., Yao, J. (2010). FEM Based 3D Tumor Growth Prediction for Kidney Tumor . In: Liao, H., Edwards, P.J."., Pan, X., Fan, Y., Yang, GZ. (eds) Medical Imaging and Augmented Reality. MIAR 2010. Lecture Notes in Computer Science, vol 6326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15699-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15699-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15698-4

  • Online ISBN: 978-3-642-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics