Abstract
A new research methodology named Brain Computer Interface (BCI) studies novel human-computer interactions; by means of BCI electronics devices, paralyzed patients are able to interact with the environment using no muscular contractions. This technique provides an external electronics support to all persons with severe motor disabilities, by acquiring in continuous mode the electroencephalogram (EEG) signals and operating some processing to control a computer or other domotics devices. Patients are so allowed to control external devices or to communicate simple messages through the computer, just concentrating their attention either on codified movements or on a letter or icon on a digital keyboard. The use of a customized and optimized spatial filtering technique embedded in the BCI system, based on the detection of the Electroencephalographic activity, improves the accuracy of BCI system itself, thanks to the explicit separation of the signal activity of interest from artefact signals. In this chapter, after an overview of the state-of-the-art research on BCI systems, the spatial filtering problem in EEG signals acquisition will be illustrated. In particular, a spatial filtering algorithm, known as ICA (Independent Component Analysis) and its application will be discussed. Finally, the design and implementation of an embedded system for EEG signals acquisition and real-time processing for BCI applications will be presented. The system is based onto a very performing and reconfigurable hardware platform. Moreover ICA algorithm has been implemented for noise reduction and artifacts removal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mason, S.G., Bashashati, A., Fatourechi, M., Navarro, K.F., Birch, G.E.: A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering 35(2), 137–169 (2007)
Donoghue, J.P.: Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience 5, 1085–1088 (2002)
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)
Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain–Computer Interface Technology: A Review of the First International Meeting. IEEE Transactions on Rehabilitation Engineering 8(2), 164–173 (2000)
Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1), 70–85 (2003)
Wolpaw, J.R., Loeb, G.E., Allison, B.Z., Donchin, E., Nascimento, O.F., Heetderks, W.J., Nijboer, F., Shain, W.G., Turner, J.N.: BCI meeting 2005: Workshop on signals and recording methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2), 138–141 (2006)
Ortiz, S.J.: Brain-Computer Interfaces: Where Human and Machine Meet. IEEE Computer 40(1), 17–21 (2007)
Cincotti, F., Bianchi, L., Birch, G., Guger, C., Mellinger, J., Scherer, R., Schmidt, R.N., Yáñez Suárez, O., Schalk, G.: BCI Meeting 2005-Workshop on Technology: hardware and software. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2), 128–131 (2006)
Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain – computer interfaces based on electrical brain signals. Journal of Neural Engineering 4, R32–R57 (2007)
McFarland, D.J., Anderson, C.W., Müller, K.R., Schlögl, A., Krusienski, D.J.: BCI Meeting 2005–workshop on BCI signal processing: feature extraction and translation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2), 135–138 (2006)
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain computer interfaces. Journal of Neural Engineering 4, R1–R13 (2007)
International Assessment, International Assessment of research and development in brain computer interfaces. WTEC Panel Report (2007)
Vidal, J.: Towards Direct Brain-Computer Communication. Annual Review of Biophysics and Bioengineering 2, 157–180 (1973)
Farwell, L.A., Donchin, E.: Talking off the top of your head: a mental prosthesis utilizing event-related potentials. Electroencephalography and Clinical Neurophysiology 70, 510–523 (1988)
Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlögl, A., Obermaier, B., Pregenzer, M.: Current Trends in Graz Brain-Computer Interface (BCI) Research. IEEE Transactions on Rehabilitation Engineering 8(2), 216–219 (2000)
Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain Computer Interface Research at Wadsworth Center. IEEE Transactions on Rehabilitation Engineering 8(2), 222–226 (2000)
Aloise, F., Cincotti, F., Babiloni, F., Marciani, M.G., Morelli, D., Paolucci, S., Oriolo, G., Cherubini, A., Sciarra, F., Magnola, F., Melpignano, A., Davide, F., Mattia, D.: ASPICE: An interface system for independent life. In: Proc. of 4th International Conference on Smart Homes and Health Telematics, ICOST (2006)
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering 51, 1034–1043 (2004)
Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: Spelling device for the paralyzed. Nature 398, 297–298 (1999)
Serby, H., Yom-Tov, E., Inbar, G.F.: An improved P300-Based Brain Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(1), 89–98 (2005)
He, Q., Wu, B., Wang, H., Zhu, L.: VEP Feature Extraction and Classification for BCI. In: Proc. of 8th International Conference on Signal Processing (2006)
Pfurtscheller, G., Neuper, C.: Motor Imagery and Direct Brain–Computer Communication. Proc. of The IEEE 89(7), 1123–1134 (2001)
Nyedermeyer, E., Lopes da Silva, F.: Electroencephalography: Basic Principles, Clinical Applications and Related Fields. Williams & Wilkinsfourth Edition (1999)
American Clinical Neurophysiology Society Guidelines, https://www.acns.org/
Nunez, P.L.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, New York (1981)
Fatourechi, M., Bashashati, A., Ward, R.K., Birch, G.E.: EMG and EOG artefacts in brain computer interface systems: a survey. Clinical Neurophysiology 118(3), 480–494 (2007)
McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology 103(3), 386–394 (1997)
James, C.J., Hesse, C.W.: Independent Component Analysis for biomedical signals. Physiological Measurement 26, R15–R39 (2005)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)
Jung, T.P., Humphries, C., Lee, T.W., Makeig, S., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing Electroencephalographic Artefacts: Comparison between ICA and PCA. Neural Networks for Signal Processing VIII, 63–72
Onton, J., Westerfield, M., Townsend, J., Makeig, S.: Imaging human EEG dynamics using independent component analysis. Neuroscience and Biobehavioral Reviews 30, 808–822 (2006)
Kachenoura, A., Albera, L., Senhadji, L., Comon, P.: ICA: a potential tool for BCI systems. IEEE Signal Processing Magazine 25(1), 57–68 (2008)
Ruckay, L., Stastny, J., Sovka, P.: Movement-related EEG decomposition using Independent Component Analysis. In: Proc. of International Conference on Applied Electronics, pp. 149–152 (2006)
Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Lin, C.T., Ko, L.W., Chang, M.H., Duann, J.R., Chen, J.Y., Su, T.P., Jung, T.P.: Review of Wireless and Wearable Electroencephalogram Systems and Brain-Computer Interfaces – A Mini-Review. Gerontology (2009), http://content.karger.com/produktedb/produkte.asp?typ=pdf&file=000230807
Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-Based Environmental Controller for the Motion-Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 137–140 (2003)
Edlinger, G., Krausz, G., Laundl, F., Niedermayer, I., Guger, C.: Architectures Of Laboratory-Pc and Mobile Pocket Pc Brain-Computer Interfaces. In: Proc. of the 2nd International IEEE EMBS Conference on Neural Engineering (2005)
Lin, C.T., Chen, Y.C., Huang, T.Y., Chiu, T.T., Ko, L.W., Liang, S.F., Hsieh, H.Y., Hsu, S.H., Duann, J.R.: Development of Wireless Brain Computer Interface With Embedded Multitask Scheduling and its Application on Real-Time Driver’s Drowsiness Detection and Warning. IEEE Transactions on Biomedical Engineering 55(5), 1582–1591 (2008)
Palumbo, A., Calabrese, B., Cocorullo, G., Lanuzza, M., Veltri, P., Vizza, P., Gambardella, A., Sturniolo, M.: A novel ICA-based hardware system for reconfigurable and portable BCI. In: Proc. of MEMEA 2009, International Workshop on Medical Measurement and Application, pp. 95–98 (2009)
National Instruments, CompactRIO Developers Guide (May 2009), http://www.ni.com/compactriodevguide/
Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits, 2nd edn. Prentice Hall, Englewood Cliffs (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Palumbo, A. et al. (2010). An Embedded System for EEG Acquisition and Processing for Brain Computer Interface Applications. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-15687-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15686-1
Online ISBN: 978-3-642-15687-8
eBook Packages: EngineeringEngineering (R0)