Advertisement

The Complexity of Codiagnosability for Discrete Event and Timed Systems

  • Franck Cassez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6252)

Abstract

In this paper we study the fault codiagnosis problem for discrete event systems given by finite automata (FA) and timed systems given by timed automata (TA). We provide a uniform characterization of codiagnosability for FA and TA which extends the necessary and sufficient condition that characterizes diagnosability. We also settle the complexity of the codiagnosability problems both for FA and TA and show that codiagnosability is PSPACE-complete in both cases. For FA this improves on the previously known bound (EXPTIME) and for TA it is a new result. Finally we address the codiagnosis problem for TA under bounded resources and show it is 2EXPTIME-complete.

Keywords

Fault Diagnosis Discrete Event Turing Machine Finite Automaton Discrete Event System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. SIAM Journal of Control and Optimization 25(1), 1202–1218 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. of the IEEE 77(1), 81–98 (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete event systems. IEEE Transactions on Automatic Control 40(9) (September 1995)Google Scholar
  4. 4.
    Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnosability of discrete event systems. IEEE Transactions on Automatic Control 46(8) (August 2001)Google Scholar
  5. 5.
    Yoo, T.S., Lafortune, S.: Polynomial-time verification of diagnosability of partially-observed discrete-event systems. IEEE Transactions on Automatic Control 47(9), 1491–1495 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 205–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems 10(1-2), 33–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, Y., Yoo, T.S., Lafortune, S.: Diagnosis of discrete event systems using decentralized architectures. Discrete Event Dynamic Systems 17(2), 233–263 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Qiu, W., Kumar, R.: Decentralized failure diagnosis of discrete event systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 36(2), 384–395 (2006)CrossRefGoogle Scholar
  11. 11.
    Basilio, J., Lafortune, S.: Robust codiagnosability of discrete event systems. In: Society, I.C. (ed.) Proceedings of the American Control Conference (ACC 2009), pp. 2202–2209 (2009)Google Scholar
  12. 12.
    Holzmann, G.J.: Software model checking with spin. Advances in Computers 65, 78–109 (2005)Google Scholar
  13. 13.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Cassez, F.: The complexity of codiagnosability for discrete event and timed systems. Research report, National ICT Australia, 24 pages, document available from arXiv (April 2010), http://arxiv.org/abs/1004.2550
  15. 15.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kozen, D.: Lower bounds for natural proof systems. In: FOCS, pp. 254–266. IEEE, Los Alamitos (1977)Google Scholar
  17. 17.
    Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta Informaticae 88(4), 497–540 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cassez, F.: A Note on Fault Diagnosis Algorithms. In: 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China. IEEE Computer Society, Los Alamitos (December 2009)Google Scholar
  19. 19.
    Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Cassez, F., Tripakis, S., Altisen, K.: Sensor minimization problems with static or dynamic observers for fault diagnosis. In: 7th Int. Conf. on Application of Concurrency to System Design (ACSD 2007), pp. 90–99. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  21. 21.
    Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of model checking for timed modal logics. J. Log. Algebr. Program. 52-53, 7–51 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Franck Cassez
    • 1
  1. 1.National ICT Australia & CNRSThe University of New South WalesSydneyAustralia

Personalised recommendations