Advertisement

Efficient On-the-Fly Emptiness Check for Timed Büchi Automata

  • Frédéric Herbreteau
  • B Srivathsan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6252)

Abstract

The Büchi non-emptiness problem for timed automata concerns deciding if a given automaton has an infinite non-Zeno run satisfying the Büchi accepting condition. The solution to this problem amounts to searching for a cycle in the so-called zone graph of the automaton. Since non-Zenoness cannot be verified directly from the zone graph, additional constructions are required. In this paper, it is shown that in many cases, non-Zenoness can be ascertained without extra constructions. An on-the-fly algorithm for the non-emptiness problem, using an efficient non-Zenoness construction only when required, is proposed. Experiments carried out with a prototype implementation of the algorithm are reported and the results are seen to be promising.

Keywords

Initial Node Liveness Property Time Progress Time Automaton Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G., Haakansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST 2006, pp. 125–126 (2006)Google Scholar
  4. 4.
    Bérard, B., Bouyer, B., Petit, A.: Analysing the pgm protocol with UPPAAL. Int. Journal of Production Research 42(14), 2773–2791 (2004)CrossRefGoogle Scholar
  5. 5.
    Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri nets. In: IFIP Congress, pp. 41–46 (1983)Google Scholar
  6. 6.
    Bouajjani, A., Tripakis, S., Yovine, S.: On-the-fly symbolic model checking for real-time systems. In: RTSS 1997, p. 25 (1997)Google Scholar
  7. 7.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a mode-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for generalized büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 169–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Daws, C., Tripakis, S.: Model checking of real-time reachability properties using abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed büchi automata. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 148–161. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Tripakis, S.: Checking timed büchi emptiness on simulation graphs. ACM Transactions on Computational Logic 10(3) (2009)Google Scholar
  16. 16.
    Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently. Formal Methods in System Design 26(3), 267–292 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frédéric Herbreteau
    • 1
  • B Srivathsan
    • 1
  1. 1.LaBRI (Université de Bordeaux - CNRS)France

Personalised recommendations