Skip to main content

DNA, Knots and Tangles

  • Chapter
The Mathematics of Knots

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 1))

Abstract

The DNA of all organisms has a complex and essential topology. Each cell has a family of naturally occurring enzymes that manipulate cellular DNA in topologically interesting and non-trivial ways in order to mediate the vital cellular life processes of replication, transcription and recombination. In order to assay enzyme binding and mechanism, molecular biologists developed the topological approach to enzymology, an experimental protocol in which one reacts small artificial circular DNA substrate molecules with purified enzyme in vitro (in the test tube). The enzyme acts on the DNA substrate, causing changes in the geometry (supercoiling) and/or topology (knotting and linking) of the DNA molecules. Once change in topology of the DNA is known, mathematical analysis can be employed to tease out the structure of the active DNA-protein complex and the changes in that structure due to enzyme mechanism. This paper will describe the tangle model and apply it to the case of site-specific DNA recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsuaga, J., Tan, R.K.-Z., Vazquez, M., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packing using molecular mechanics models. Biophys. Chem. 101–102, 475–484 (2002)

    Article  Google Scholar 

  2. Arsuaga, J., Vazquez, M., Trigueros, S., Sumners, D.W., Roca, J.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99, 5373–5377 (2002)

    Article  Google Scholar 

  3. Arsuaga, J., Vazquez, M., McGuirk, P., Sumners, D.W., Roca, J.: DNA knots reveal chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA 102, 9165–9169 (2005)

    Article  Google Scholar 

  4. Bauer, W.R., Crick, F.H.C., White, J.H.: Supercoiled DNA. Sci. Am. 243, 100–113 (1980)

    Google Scholar 

  5. Buck, G., Zechiedrich, E.L.: DNA disentangling by type-2 topoisomerases. J. Mol. Biol. 340, 933–939 (2004)

    Article  Google Scholar 

  6. Burde, G., Zieschang, H.: Knots. de Gruyter, Berlin (1985)

    MATH  Google Scholar 

  7. Călugareănu, G.: Sur les classes d’isotope des noeuds tridimensionnels et leurs invariants. Czechoslov. Math. J. 11, 588–625 (1961)

    Google Scholar 

  8. Conway, J.H.: On enumeration of knots and links, and some of their algebraic properties. In: Computational Problems in Abstract Algebra. Proc. Conf., Oxford 1967, pp. 329–358. Pergamon, Elmsford (1970)

    Google Scholar 

  9. Cozzarelli, N.R., Cost, G.J., Mollman, M., Viard, T., Stray, J.E.: Giant proteins that move DNA: bullies of the genomic playground. Nat. Rev. Mol. Cell Biol. 7, 580–588 (2006)

    Article  Google Scholar 

  10. Crisona, N.J., Weinberg, R.L., Peter, B.J., Sumners, D.W., Cozzarelli, N.R.: The topological mechanism of phage lambda integrase. J. Mol. Biol. 289, 747–775 (1999)

    Article  Google Scholar 

  11. Culler, M.C., Gordon, C.M., Luecke, J., Shalen, P.B.: Dehn surgery on knots. Ann. Math. 125, 237–300 (1987)

    Article  MathSciNet  Google Scholar 

  12. Darcy, I.K., Sumners, D.W.: A strand passage metric for topoisomerase action. In: Suzuki, S. (ed.) Knots ’96. Proceedings of the Fifth International Research Institute of the Mathematical Society of Japan, pp. 267–278. World Scientific, Singapore (1997)

    Google Scholar 

  13. Darcy, I.K., Sumners, D.W.: Applications of topology to DNA. Banach Cent. Publ. 42, 65–75 (1998)

    MathSciNet  Google Scholar 

  14. Darcy, I.K., Sumners, D.W.: Rational tangle distances on knots and links. Math. Proc. Camb. Philos. Soc. 128, 497–510 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deibler, R.W., Mann, J.K., Sumners, D.W., Zechiedrich, L.: Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation. BMC Mol. Biol. 8, 44 (2007)

    Article  Google Scholar 

  16. Ernst, C., Sumners, D.W.: A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc. 108, 489–515 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ernst, C., Sumners, D.W.: Solving tangle equations arising in a recombination model. Math. Proc. Camb. Philos. Soc. 126, 23–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fuller, B.: The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68, 815–819 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grindley, N.D.F., Whiteson, K.L., Rice, P.A.: Mechanisms of site-specific recombination. Ann. Rev. Biochem. 75, 567–605 (2006)

    Article  Google Scholar 

  20. Jones, V.F.R.: A polynomial invariant for knots an links via Von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985)

    Article  MATH  Google Scholar 

  21. Kauffman, L.H.: On Knots. Ann. of Math. Studies, vol. 115. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  22. Krasnow, M.A., Stasiak, A., Spengler, S.J., Dean, F., Koller, T., Cozzarelli, N.R.: Determination of the absolute handedness of knots and catenanes of DNA. Nature 304, 559–560 (1983)

    Article  Google Scholar 

  23. Lacher, R.C., Bryant, J.L., Howard, L., Sumners, D.W.: Linking phenomena in the amorphous phase of semicrystalline polymers. Macromolecules 19, 2639–2643 (1986)

    Article  Google Scholar 

  24. Lickorish, W.B.R.: Prime knots and tangles. Trans. Am. Math. Soc. 267, 321–332 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, Z., Mann, J.K., Zechiedrich, E.L., Chan, H.S.: Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. J. Mol. Biol. 361, 268–285 (2006)

    Article  Google Scholar 

  26. Liu, Z., Zechiedrich, E.L., Chan, H.S.: Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J. 90, 2344–2355 (2006)

    Article  Google Scholar 

  27. Marenduzzo, D., Orlandini, E., Stasiak, A., Sumners, D.W., Tubiana, L., Micheletti, C.: DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. USA 106, 22269–22274 (2009)

    Article  Google Scholar 

  28. Micheletti, C., Marenduzzo, D., Orlandini, E., Sumners, D.W.: Knotting of random ring polymers in confined spaces. J. Chem. Phys. 124(1–10), 064903 (2006)

    Article  Google Scholar 

  29. Micheletti, C., Marenduzzo, D., Orlandini, E., Sumners, D.W.: Simulations of knotting in confined circular DNA. Biophys. J. 95, 3591–3599 (2008)

    Article  Google Scholar 

  30. Moffatt, H.K.: Knots and Fluid Dynamics. In: Stasiak, A., Katritch, V., Kauffman, L.H. (eds.) Ideal Knots. Series on Knots and Everything, vol. 19, pp. 223–233. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  31. Moser, L.: Elementary surgery along a torus knot. Pac. J. Math. 38, 737–745 (1971)

    MATH  Google Scholar 

  32. Ricca, R.L.: New developments in topological fluid mechanics: from Kelvin’s vortex knots to magnetic knots. In: Stasiak, A., Katritch, V., Kauffman, L.H. (eds.) Ideal Knots. Series on Knots and Everything, vol. 19, pp. 255–273. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  33. Ricca, R.L.: Tropicity and Complexity Measures for Vortex Tangles. Lecture Notes in Physics, vol. 571, pp. 366–372. Springer, Berlin (2001)

    Google Scholar 

  34. Rolfsen, D.: Knots and Links. Publish or Perish, Berkeley (1976)

    MATH  Google Scholar 

  35. Saka, Y., Vazquez, M.: TangleSolve: topological analysis of site-specific recombination. Bioinformatics 18, 1011–1012 (2002)

    Article  Google Scholar 

  36. Schubert, H.: Knoten mit zwei Brücken. Math. Z. 65, 133–170 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stasiak, A., Katritch, V., Bednar, J., Michoud, D., Dubochet, J.: Electrophoretic mobility of DNA knots. Nature 384(6605), 122 (1996). doi:10.1038/384122a0

    Article  MathSciNet  Google Scholar 

  38. Steen, L.A.: The science of patterns. Science 240, 611–616 (1988)

    Article  MathSciNet  Google Scholar 

  39. Sumners, D.W.: The role of knot theory in DNA research. In: McCrory, C., Schifrin, T. (eds.) Geometry and Topology, pp. 297–318. Dekker, New York (1987). Chap. 24

    Google Scholar 

  40. Sumners, D.W.: Untangling DNA. Math. Intell. 12, 71–80 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sumners, D.W.: Knot theory and DNA. In: Sumners, D.W. (ed.) New Scientific Applications of Geometry and Topology. Proceedings of Symposia in Applied Mathematics, vol. 45, pp. 39–72. Am. Math. Soc., Providence (1992)

    Google Scholar 

  42. Sumners, D.W.: Lifting the curtain: Using topology to probe the hidden action of enzymes. Not. Am. Math. Soc. 42, 528–537 (1995)

    MATH  MathSciNet  Google Scholar 

  43. Sumners, D.W.: Random knotting: theorems, simulations and applications. In: Ricca, R. (ed.) Lectures on Topological Fluid Mechanics. CIME Lecture Notes in Mathematics, vol. 1973, pp. 187–217. Springer, Berlin (2009)

    Chapter  Google Scholar 

  44. Sumners, D.W.: DNA topology: experiments and analysis. In: Kawauchi, A. (ed.) Knot Theory for Scientific Objects. Proceedings of the International Workshop on Knot Theory for Scientific Objects. OCAMI Studies, vol. 1(2), pp. 213–237 (2007)

    Google Scholar 

  45. Sumners, D.W., Ernst, C., Spengler, S.J., Cozzarelli, N.R.: Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys. 28, 253–313 (1995)

    Article  Google Scholar 

  46. Trigueros, S., Arsuaga, J., Vazquez, M., Sumners, D.W., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29, 67–71 (2001)

    Article  Google Scholar 

  47. Vazquez, M.: Tangle analysis of site-specific recombination: Gin and Xer systems. PhD thesis, Florida State University, Tallahassee, FL (2000)

    Google Scholar 

  48. Vazquez, M., Sumners, D.W.: Tangle analysis of Gin site-specific recombination. Math. Proc. Camb. Philos. Soc. 136, 565–582 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Vazquez, M., Colloms, S.D., Sumners, D.W.: Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J. Mol. Biol. 346, 493–504 (2005)

    Article  Google Scholar 

  50. Virnau, P., Mirny, L.A., Kardar, M.: Intricate knots in proteins: function and evolution. PLoS Comput. Biol. 2, e122 (2006)

    Article  Google Scholar 

  51. Wang, J.C.: Cellular roles of DNA topoisomerases, a molecular perspective. Nat. Rev. Molecular Cell Biol. 3, 430–440 (2002)

    Article  Google Scholar 

  52. Wang, J.C.: Untangling the Double Helix, DNA Entanglement and the Action of DNA Topoiosmerases. Cold Spring Harbor Laboratory Press, Cold Spring (2009)

    Google Scholar 

  53. Wasserman, S.A., Cozzarelli, N.R.: Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc. Natl. Acad. Sci. USA 82, 1079–1083 (1985)

    Article  Google Scholar 

  54. Wasserman, S.A., Cozzarelli, N.R.: Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986)

    Article  Google Scholar 

  55. Wasserman, S.A., Dungan, J.M., Cozzarelli, N.R.: Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229, 171–174 (1985)

    Article  Google Scholar 

  56. White, J.H.: Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91, 693–728 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Witt Sumners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumners, D.W. (2011). DNA, Knots and Tangles. In: Banagl, M., Vogel, D. (eds) The Mathematics of Knots. Contributions in Mathematical and Computational Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15637-3_11

Download citation

Publish with us

Policies and ethics