Skip to main content

Quartzofeldspathic Rocks

  • Chapter
  • First Online:
Pyrometamorphism
  • 1066 Accesses

Abstract

Pyrometamorphosed quartzofeldspathic rocks (sandstone, shale, claystone) and sediments (sand-silt, clay, glacial till, diatomaceous earth), and their metamorphosed equivalents (phyllite, schist, gneiss), are characterised by the presence of tridymite, mullite/sillimanite, cordierite, orthopyroxene, clinopyroxene, sanidine-anorthoclase, plagioclase (oligoclase–anorthite), corundum, hercynite-rich spinel, magnetite, ilmenite, hematite, pseudobrookite, sulphides and in carbonaceous protoliths, native metals. Ti-rich biotite and osumilite are less common; sapphirine is rare. These minerals are usually associated with acidic (rhyolitic) to intermediate (dacitic) glass that is frequently abundant enough for the rocks to be termed buchites and paralavas. Partly melted granite-granodiorite may contain tridymite, Ca-plagioclase, orthopyroxene and magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham K, Gebert W, Medenbach O, Schreyer W, Hentschel G (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contrib Mineral Petrol 82: 252–258

    Google Scholar 

  • Ackermann PB (1983) Vitrification of cave sandstone by Karroo Dolerite in the Sterkspruit Valley, Barkly East. Trans Geol Soc S Africa 8: 19–35

    Google Scholar 

  • Ackermann PB, Walker F (1959) Vitrification of arkose by Karroo Dolerite near Heilbron, Orange Free State. Q J Geol Soc Lond 116: 239–254

    Google Scholar 

  • Al-Rawi Y, Carmichael ISE (1967) A note on the natural fusion of granite. Am Mineral 52: 1806–1814

    Google Scholar 

  • Allen JA (1874) Metamorphism produced by the burning of lignite beds in Dakota and Montana territories. Boston Soc Nat Hist Proc 16: 246–262

    Google Scholar 

  • Arnold R, Anderson R (1907) Metamorphism by combustion of the hydrocarbons in the oil-bearing shale of California. J Geol 15: 750–758

    Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115: 103–111

    Google Scholar 

  • Belakvski D (1990) The minerals of the burning coal seams at Ravat, Tadshikistan. Lapis 15: 21–26

    Google Scholar 

  • Belikov BP (1933) Composition of some burned rocks from the Kuzbass. Tr Petrog Inst Akad Nauk SSSR 4: 91–100 (in Russian)

    Google Scholar 

  • Bentor YK, Kastner M (1976) Combustion metamorphism in southern California. Science 193: 486–488

    Google Scholar 

  • Bentor YK, Kastner M, Perlman I, Yelin Y (1981) Combustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition. Geochim Cosmochim Acta 45: 2229–2255

    Google Scholar 

  • Bergen vanMJ, Barton M (1984) Complex interaction of aluminous sedimentary xenoliths and siliceous magma: an example from Mt. Amiata (Central Italy). Contrib Mineral Petrol 86: 374–385

    Google Scholar 

  • Bowen NL, Schairer JF (1935) The system MgO-FeO-SiO2. Am J Sci 29: 151–217

    Google Scholar 

  • Brady LF, Gregg JW (1939) Note on the temperature attained in a burning coal seam. Am J Sci 237: 116–119

    Google Scholar 

  • Brauns R (1912a) Die kristallinen Schiefer des Laacher Seegebeits und ihre Umbilding zu Sanidinit. E. Schweizerbarth’sche Verlagsbuchhandlung, Stuttgart, 1911

    Google Scholar 

  • Brauns R (1912b) Die chemische Zusammensetzung granatführender kristalliner Scheifer, Cordieritgesteine und Sanidinite aus dem Laacher Seegebeit. N Jb Mineral, Geol Pal 34: 85–175

    Google Scholar 

  • Brindley GW, Nakahira M (1959a) The kaolinite-mullite reaction series: I, a survey of outstanding problems. J Am Ceram Soc 43: 311–314

    Google Scholar 

  • Brown WL, Parsons I (1981) Towards a more practical two-feldspar geothermometer. Contrib Mineral Petrol 76: 369–396

    Google Scholar 

  • Buist DS (1961) The composite sill of Rudh’a’Chromain, Carsaig, Mull. Geol Mag 98: 67–76

    Google Scholar 

  • Bustin RM, Mathews WH (1982) In situ gasification of coal, a natural example: history, petrology, and mechanics of combustion. Can J Earth Sci 19: 514–523

    Google Scholar 

  • Butler BCM (1961) Metamorphism and metasomatism of rocks in the Moine Series by a dolerite plug at Glenmore, Ardnamurchan. Mineral Mag 32: 866–897

    Google Scholar 

  • Cameron WE (1976a) Coexisting sillimanite and mullite. Geol Mag 6: 497–514

    Google Scholar 

  • Cawhorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39: 1669–1687

    Google Scholar 

  • Chatterjee NN, Ray S (1946) On the burnt coal outcrop from the central Kujama coalfield, Jharia. Geol Min Metall Soc India 18: 133–135

    Google Scholar 

  • Chinner GA, Dixon PD (1973) Irish osumilite. Mineral Mag 39: 189–192

    Google Scholar 

  • Church BN, Matheson A, Hora ZD (1979) Combustion metamorphism in the Hat Creek area, British Columbia. Can J Earth Sci 16: 1882–1887

    Google Scholar 

  • Clark BH, Peacor DR (1987) Pyrometamorphism and partial melting of shales during combustion metamorphism: mineralogical, textural, and chemical effects. Contrib Mineral Petrol 112: 558–568

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granite magmas. Can Mineral 19: 111–131

    Google Scholar 

  • Coates DA, Naeser CW (1984) Map showing fission-track ages of clinker in the Rochelle Hills, southern Campbell County, Wyoming. US Geol Surv Misc Inv Map I-1462

    Google Scholar 

  • Cole D (1974) A recent example of spontaneous combustion of oil-shale. Geol Mag 111: 355–356

    Google Scholar 

  • Comer JJ (1960) Electron microscope studies of mullite derivement in fired kaolinites. J Am Ceram Soc 43: 375–384

    Google Scholar 

  • Comer JJ (1961) New electron-optical data on the kaolinite-mullite transformation. J Am Ceram Soc 44: 561–563

    Google Scholar 

  • Cosca M, Essene EJ, Geissman JW, Simmons WB, Coates DA (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am Mineral 74: 85–100

    Google Scholar 

  • Cosca M, Peacor D (1987) Chemistry and structure of esseneite, (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism. Am Mineral 72: 148–156

    Google Scholar 

  • Cosca M, Rouse RR, Essene EJ (1988) Dorrite [Ca2(Mg,Fe3+ 4)(Al2Si2)O20], a new member of the aenigmatite group from a pyrometamorphic melt-rock. Am Mineral 73: 1440–1448

    Google Scholar 

  • Daly TK, Buseck PR, Williams P, Lewis CF (1993) Fullerenes from a fulgurite. Science 259: 1599–1601

    Google Scholar 

  • Damon RF (1884) Geology of Weymouth, Portland and the coast of Dorsetshire. Edward Stanford, London

    Google Scholar 

  • de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51: 2639–2652, (Updated version Theriak-Domino v.140205. Inst. Mineral. Petrol. Univ. Basel Switzerland)

    Google Scholar 

  • Eichhubl P, Aydin A (2003) Ductile opening-mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone. J Struc Geol 25: 121–134

    Google Scholar 

  • Ermankov NP (1935) Pasrud-Yagnob coal deposit and burning mines of Kan-Tag mountain. In: Geology of Tadjikistan Coal Deposits. Moscow, PH of Academy of Sciences USSR, pp 47–66 (in Russian)

    Google Scholar 

  • Eskola P (1939) Die metamorphosen gesteine. In: Barth TFW, Correns CW, Eskola P (eds) Die Entstehung der Gesteine. Springer, Berlin, pp 263–407

    Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234: 189–193

    Google Scholar 

  • Estrada S, Piepjohn K, Frey MJ, Reinhardt L, Andruleit H, von Grosen W (2009) Pliocene coal-seam fires on southern Ellesmere Island, Canadian Arctic. N Jb Geol Paläont Abh 251: 33–52

    Google Scholar 

  • Fermor LL (1918) Preliminary note on the burning of coal seams at the outcrop. Trans Min Geol Metall Inst India 12: 50–63

    Google Scholar 

  • Fermor LL (1924) Discussion on Tilley’s paper. Q J Geol Soc Lond 80: 70–71

    Google Scholar 

  • Foit FF, Hooper RL, Rosenberg PE (1987) Unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. Am Mineral 72: 137–147

    Google Scholar 

  • Frechen J (1947) Vorgänge der Sanidinit-Bildung im Laacher See-Gebiet. Fortschr Mineral 26: 147–166

    Google Scholar 

  • Frenzel G, Stähle V (1984) On aluminosilicate glass with inclusions of lechatelierite from a fulgurite tube on the Hahnenstock Mt. (Glarner Freiburg, Switzerland). Chem Erde 43: 17–26

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV, A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119: 197–212

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271: 123–134

    Google Scholar 

  • Graham IJ, Grapes RH, Kifle K (1988) Buchitic metagreywacke xenoliths from Mount Ngauruhoe, Taupo Volcanic Zone, New Zealand. J Volc Geotherm Res 35: 205–216

    Google Scholar 

  • Grapes RH (1986) Melting and thermal reconstitution of pelitic xenoliths, Wehr volcano, East Eifel, Germany. J Petrol 27: 343–396

    Google Scholar 

  • Grapes RH (1991) Aluminous alkali feldspar-bearing xenoliths and the origin of sanidinite, East Eifel, Germany. N Jb Mineral Ab 3: 129–144

    Google Scholar 

  • Grapes R, Zhang K, Peng Z (2009) Paralava and clinker products of coal combustion, Yellow River, Shanxi province, China. Lithos 113: 831–843

    Google Scholar 

  • Haggerty SE (1967) Opaque oxides in terrestrial igneous rocks. In: Rumble D III (ed) Oxide minerals. Reviews in mineralogy 3. Mineralogical Society of America, pp Hg101–300

    Google Scholar 

  • Harlov DE, Newton RC (1993) Reversal of the metastable kyanite + corundum + quartz and andalusite + corundum + quartz equilibria and the enthalpy of formation of kyanite and andalusite. Am Mineral 78: 594–600

    Google Scholar 

  • Hayden HH (1918) General report of the Director for 1918. Geol Surv India Records 50: 8

    Google Scholar 

  • Heffern EL, Coates DA, Naeser CW (1993) Distribution and age of clinker in Northern Powder River Basin, Montana. Am Assoc Petrol Geol 67: 1342 (Abs)

    Google Scholar 

  • Hensen BJ, Gray DR (1979) Clinohypersthene and hypersthene from a coal fire buchite near Ravensworth, N.S.W., Australia. Am Mineral 64: 131–135

    Google Scholar 

  • Hentschel G (1977) Neufunde seltener Minerale im Laacher Vulcangebiet. Aufschluss 28: 129–133

    Google Scholar 

  • Hentschel G, Abraham K, Schreyer W (1980) First terrestrial occurrence of roedderite in volcanic ejecta of the Eifel, Germany. Contrib Mineral Petrol 73: 127–130

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminium silicate phase diagram. Am J Sci 271: 97–131

    Google Scholar 

  • Holgate N (1978) A composite tholeiite dyke at Imachar, Isle of Arran: its petrogenesis and associated pyrometamorphism. Mineral Mag 42: 141–142

    Google Scholar 

  • Holm JL, Kleppa OJ (1966) The thermodynamic properties of the aluminium silicates. Am Mineral 51: 1608–1622

    Google Scholar 

  • Holness MB, Dane K, Sides R, Richardson C, Caddick M (2005) Melting and melt segregation in the aureole of the Glenmore plug, Ardnamurchan. J Metamorph Geol 23: 29–43

    Google Scholar 

  • Holness MB, Watt GR (2002) The aureole of the Traigh Bhàn na Sgùrra Sill, Isle of Mull: reaction-driven microcracking during pyrometamorphism. J Petrol 43: 511–534

    Google Scholar 

  • Hoover JD (1977) Melting relations of a new chilled margin sample from the Skaergaard intrusion. Carnegie Inst Washington Geophys Lab Rpt 739–743

    Google Scholar 

  • Johannes W, Holz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Google Scholar 

  • Jones AH, Geissman JW, Coates DA (1984) Clinker deposits, Powder River Basin, Wyoming and Montana: a new source of high-fidelity paleomagnetic data from the Quaternary. Geophys Res Lett 11: 1231–1234

    Google Scholar 

  • Kaczor SM, Hanson GN, Peterman ZE (1988) Disequilibrium melting of granite at the contact of a basic plug: a geochemical and petrological study. J Geol 96: 61–78

    Google Scholar 

  • Kalb G (1935) Beiträge zur Kenntnis der Auswürflinge, im besondern der Sanidinite des Laacher Seegebietes. Min Petrogr Mitt 46: 20–55

    Google Scholar 

  • Kalb G (1936) Beiträge zur Kenntnis der Auswürflinge des Laacher Seegebietes II. Zwei Arten von Umbildungen Kristalliner Schiefer zu Sanidiniten. Mineral Petrogr Mitt 47: 185–210

    Google Scholar 

  • Kalugin IA, Tret’yakov GA, Bobrov VA (1991) Iron-ore basalts in fused rocks of Eastern Kazakhstan. Novosibirsk (in Russian)

    Google Scholar 

  • Kays MA, Goles GG, Grover TW (1989) Precambrian sequence bordering the Skaergaard Intrusion. J Petrol 30: 321–361

    Google Scholar 

  • Kays MA, McBirney AR, Goles GG (1981) Xenoliths of gneisses and conformable, clot-like granophyres in the marginal Border Group, Skaergaard Intrusion, East Greenland. Contrib Mineral Petrol 45: 265–244

    Google Scholar 

  • Kelsey DE, White RW, Powell R (2005) Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for silica-undersaturated sapphirine-bearing mineral assemblages. J Metamorph Geol 23: 217–239

    Google Scholar 

  • Kennedy GC, Wasserburg FJ, Heard HC, Newton RC (1962) The upper three-phase region in the system SiO2-H2O. Am J Sci 260: 501–521

    Google Scholar 

  • Kerrick DM, Spear JA (1988) The role of minor element solid solution on the andalusite-sillimanite equilibrium in metapelites and peraluminous granitoids. Am J Sci 288: 152–192

    Google Scholar 

  • Kifle K (1992) High temperature-low pressure, water-saturated disequilibrium melting experiments of quartzofeldspathic rock compositions, Unpub. PhD thesis. Research School of Earth Sciences, Victoria University of Wellington, New Zealand

    Google Scholar 

  • Killie IC, Thompson RN, Morrison MA, Thompson RF (1986) Field evidence for turbulence during flow of basalt magma through conduits from southwest Mull. Geol Mag 123: 693–697

    Google Scholar 

  • Kitchen D (1984) Pyrometamorphism and the contamination of basaltic magma at Tieveragh, Co. Antrim. J Geol Soc 141: 733–745

    Google Scholar 

  • Knopf A (1938) Partial fusion of granodiorite by intrusive basalt, Owens Valley, California. Am J Sci 36: 373–376

    Google Scholar 

  • Larsen ES, Switzer G (1939) An obsidian-like rock formed by the melting of a granodiorite. Am J Sci 237: 562–568

    Google Scholar 

  • Levin EM, McMurdie HF, Hall FP (1956) Phase diagrams for ceramists. American Ceramic Society, Columbus, OH

    Google Scholar 

  • Longhi J (1991) Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. Am Mineral 76: 785–800

    Google Scholar 

  • Lore JS, Eichhubl P, Aydin A (2002) Alteration and fracturing of siliceous mudstone during in situ combustion, Orcutt field, California. J Petrol Sci Eng 36: 169–182

    Google Scholar 

  • Markl G (2005) Mullite-corundum-spinel-cordierite-plagioclase xenoliths in the Skaergaard Marginal Border group: multi-stage interaction between metasediments and basaltic magma. Contrib Mineral Petrol 149: 196–215

    Google Scholar 

  • Melson WG, Switzer G (1966) Plagioclase-spinel-graphite xenoliths in metallic iron-bearing basalts, Disco island, Greenland. Am Mineral 61: 664–676

    Google Scholar 

  • Miyashiro A, Iiyama T (1954) A preliminary note on a new mineral, indialite, polymorphic with cordierite. Proc Imp Acad Japan 30: 746–751

    Google Scholar 

  • Miyashiro A, Yamasaki M, Miyashiro T (1955) The polymorphism of cordierite and indialite. Am J Sci 253: 185–208

    Google Scholar 

  • Muan A (1956) Phase equilibria at liquidus temperatures in the system iron oxide-Al2O3-SiO2 in air atmosphere. J Am Ceram Soc 40: 121–133

    Google Scholar 

  • Muan A, Hauck J, Löfall T (1972) Equilibrium studies with a bearing on lunar rocks Proc. Lunar Sci Conf 3: 185–196

    Google Scholar 

  • Novikov VP (1993) Derivative organic substances of coal-fire on Fan-Yagnob deposit. Proc Tadjikistan Rep Acad Sci Earth Sci Ser 4: 91–58, (in Russian)

    Google Scholar 

  • Novikov IS, Sokol EV, Travin AV, Novikova SA (2008) Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition). Russian Geol Geophys 49: 378–397

    Google Scholar 

  • Novikov VP, Suprychev VV (1986) Parameters of modern mineral-forming processes associated with underground coal combustion at Fan-Yagnob deposit. Mineral Tadjikistan 7: 97–104, (in Russian)

    Google Scholar 

  • Nzalii T, Duchesnei JC, Jacquemin C, Vander Auweri J (1999) Pyrométamorphisme induit par la gazéification souterraine de niveaux charbonneux du Westphalien dans le bassin de Mons (Belgique). Geol Belgica 2/3–4: 221–134

    Google Scholar 

  • Olesch M, Seifert F (1981) The restricted stability of osumilite under hydrous conditions in the system K2O-MgO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 76: 362–367

    Google Scholar 

  • Ostapenko GT, Gorogotskaya LI, Timoshkova LP, Kuts VA (1999) On decomposition of kyanite and andalusite at temperatures above 800°C and elevated water pressure. (Abs). Khitariada-99: 66

    Google Scholar 

  • Ostrovsky IA (1966) PT-diagram of the system SiO2-H2O. Geol J 5: 127–134

    Google Scholar 

  • Parodi GC, Ventura GD, Lorand J-P (1989) Mineralogy and petrology of an unusual osumulite + vanadium-rich pseudobrookite assemblage from the Vico Volcanic Complex (latinum, Italy). Am Mineral 74: 1278–1284

    Google Scholar 

  • Patterson JH, Corcoran JF, Kinealy KM (1994) Chemistry and mineralogy of carbonates in Australian bituminous and subbituminous coals. Fuel 73: 1735–1745

    Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100: 423–446

    Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 ‘triple-point’ assemblages in muscovite + biotite + quartz-bearing metapelites, with implications. Am Mineral 86: 1414–1422

    Google Scholar 

  • Pedersen AK (1978) Non-stoichiometric magnesian spinels in shale xenoliths from a native iron-bearing andesite at Asuk, Disko, Central West Greenland. Contrib Mineral Petrol 67: 331–340

    Google Scholar 

  • Piwinskii (1968) Experimental studies of igneous rock series central Sierra Nevada batholith, California. J Geol 76: 548–570

    Google Scholar 

  • Preston RJ, Dempster TJ, Bell BR, Rogers G (1999) The petrology of mullite-bearing peraluminous xenoliths: implications for contamination processes in basaltic magmas. J Petrol 40: 549–573

    Google Scholar 

  • Rattigan JH (1967) Phenomenon about burning mountain, Wingen, New South Wales. Aust J Sci 30: 183–184

    Google Scholar 

  • Renzulli A, Tribaudino M, Salvioli-Mariani E, Serri G, Holm PM (2003) Cordierite –anorthoclase xenoliths in Stromboli (Aeolian Islands) Sicily: an example of a fast cooled contact aureole. Eur J Mineral 15: 665–679

    Google Scholar 

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminium silicate triple point. Am J Sci 267: 259–272

    Google Scholar 

  • Rogers GS (1917) Baked shale and slag formed by the burning of coal beds. US Geol Surv Prof Pap 108-A: 1–10

    Google Scholar 

  • Rubie DC, Brearley AJ (1987) Metastable melting during the breakdown of muscovite + quartz at1 kbar. Bull Mineral 110: 533–549

    Google Scholar 

  • Sabzehei M, Makkizaeh MA (1998) Buchite from Feshark area, northeast Isfahan, central Iran: A preliminary study. J Sci I R Iran 9: 34–47

    Google Scholar 

  • Salvioli-Mariani E, Renzulli A, Serri G, Holm PM, Toscani L (2005) Glass-bearing crustal xenoliths (buchites) erupted during the recent activity of Stromboli (Aeolian Islands). Lithos 81: 255–277

    Google Scholar 

  • Saraf AK, Prakash A, Sengupta S, Gupta RP (1995) Landsat-TM data for estimating ground temperature and depth of subsurface coal fire in the Jharia coalfield, India. Int J Remote Sensing 16: 2111–2124

    Google Scholar 

  • Sauvage J-F, Sauvage M (1992) Tectonique, néotectonique et phénomènes ignés a l’extremité est dur fossé de Nara (Mali): Daounas et lac Faguibine. J Afr Earth Sci 15: 11–33

    Google Scholar 

  • Schairer JF (1942) The system CaO-FeO-Al2O3-SiO2:1. Results of quenching experiments on five joins. J Am Ceram Soc 25: 241–274

    Google Scholar 

  • Schairer JF, Yagi K (1952) The system FeO-Al2O3-SiO2. Am J Sci Bowen 471–512

    Google Scholar 

  • Scheel R (1975) Sprechsaal Keram. Glass Baustoffe 108: 685

    Google Scholar 

  • Schreyer W, Maresch WV, Daniels P, Wolfsdorff P (1990) Potassic cordierites: characteristic minerals for high-temperature, very-low pressure environments. Contrib Mineral Petrol 105: 162–172

    Google Scholar 

  • Searle EJ (1962) Xenoliths and metamorphosed rocks associated with the Auckland basalts. NZ J Geol Geophys 5: 384–403

    Google Scholar 

  • Seck HA (1971) Koexistierende Alkalifeldspate und Plagioklase im System NaAlSi3O8–KAlSi3O8–CaAl2Si2O8–H2O bei Temperaturen von 650° bis 900°C. N J Mineral Abh 115: 315–345

    Google Scholar 

  • Segnit ER, Anderson CA (1971) An SEM study of fired kaolinite. Am Ceram Soc Bull 50: 480–491

    Google Scholar 

  • Seifert F (1974) Stability of sapphirine: a study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. J Geol 82: 173–204

    Google Scholar 

  • Sen Gupta S (1957) Petrology of the para-lavas of the eastern part of Jharia coalfield. Q J Geol Min Metall Soc India 29: 79–101

    Google Scholar 

  • Sharygin VV, Sokol EV, Belakovskii DI (2009) Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russ Geol Geophys 50: 703–721

    Google Scholar 

  • Shaw HR (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. Am Mineral 48: 883–896

    Google Scholar 

  • Sigurdsson H (1968) Petrology of acid xenoliths from Surtsey. Geol Mag 105: 440–453

    Google Scholar 

  • Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22: 41–84

    Google Scholar 

  • Smith DGW (1965) The chemistry and mineralogy of some emery-like rocks from Sithean Sluaigh, Strachur, Argyllshire. Am Mineral 50: 1982–2022

    Google Scholar 

  • Smith DGW (1969) Pyrometamorphism of phyllites by a dolerite plug. J Petrol 10: 20–55

    Google Scholar 

  • Spry AH, Solomon M (1964) Columnar buchites at Apsley, Tasmania. Q J Geol Soc Lond 120: 519–545

    Google Scholar 

  • Steiner A (1958) Petrogenetic implications of the 1954 Ngauruhoe lava and its xenoliths. NZ J Geol Geophys 1: 325–363

    Google Scholar 

  • Svensen H, Dysthe DK, Bendlien EH, Sacko S, Coulibaly H, Planke S (2003) Subsurface combustion in Mali: refutation of the active volcanism hypothesis in West Africa. Geology 31: 581–584

    Google Scholar 

  • Thomas HH (1922) On certain xenolithic Tertiary minor intrusions in the Island of Mull (Argyllshire). Q J Geol Soc Lond 78: 229–259

    Google Scholar 

  • Thwaites RG (ed) (1969) Original journals of the Lewis and Clark expedition, 1804–1806. Arno Press, New York, NY

    Google Scholar 

  • Tomkeieff SI (1940) The dolerite plugs of Tieveragh and Tievebulliagh near Cushendall, Co. Antrim, with a note on buchite. Geol Mag 7: 54–64

    Google Scholar 

  • Tommasini S, Davies GR (1997) Isotope disequilibrium during anatexis: a case study of contact melting, Sierra Nevada, California. Earth Planet Sci Lett 148: 273–285

    Google Scholar 

  • Tulloch AJ, Campbell JK (1993) Clinoenstatite-bearing buchites possibly from combustion of hydrocarbon gases in a major thrust zone: Glenroy Valley, New Zealand. J Geol 101: 404–412

    Google Scholar 

  • Turnock AC, Eugster HP (1962) Fe-Al oxides: phase relations below 1000°C. J Petrol 3: 533–565

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi2O8-KAlSi2O8-SiO2-H2O. Geol Soc Am Mem 74

    Google Scholar 

  • Van Genderen JL, Guan HY (1997) Environmental monitoring of spontaneous combustion in the north China coalfields. Final Report of European Commission ISBN 90 6164 1527

    Google Scholar 

  • Venkatesh V (1952) Development and growth of cordierite in paralavas. Am Mineral 37: 831–848

    Google Scholar 

  • Weill DF (1966) Stability relations in the Al2O3-SiO2 system calculated from solubilities in the Al2O3-SiO2-Na3AlF6 system. Geochim Cosmochim Acta 30: 223–237

    Google Scholar 

  • Whitworth HF (1958) The occurrence of some fused sedimentary rocks at Ravensworth, N.S.W. J R Soc N S W 92: 204–210

    Google Scholar 

  • Willemse J, Viljoen EA (1970) The fate of argillaceous material in a gabbroic magma of the Bushveld complex. Geol Soc S Afr Spec Pub 1: 336–366

    Google Scholar 

  • Wyllie PJ (1959) Microscopic cordierite in fused Torridonian arkose. Am Mineral 44: 1039–1046

    Google Scholar 

  • Wyllie PJ (1961) Fusion of a Torridonian sandstone by a picrite sill on Soay (Hebrides). J Petrol 2: 1–37

    Google Scholar 

  • Wörner G, Schmincke H-U, Schreyer W (1982) Crustal xenoliths from the Quaternary Wehr volcano (East Eifel). N Jb Mineral Mh H 1: 39–47

    Google Scholar 

  • Yavorsky VI, Radugina LV (1932) Coal-fire combustion and attendant events in the Kuznetsky basin. Mining J 10: 55–59 (in Russian)

    Google Scholar 

  • Zbarskiy MI (1963) Mineralogical and petrographical features of burned rocks from central Asia. Zapiski Kirgiz Otdel Vses Mineral Obshch 4: 53–67 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Grapes .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grapes, R. (2010). Quartzofeldspathic Rocks. In: Pyrometamorphism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15588-8_3

Download citation

Publish with us

Policies and ethics