Sollya: An Environment for the Development of Numerical Codes

  • Sylvain Chevillard
  • Mioara Joldeş
  • Christoph Lauter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6327)


Sollya has become a mature tool for the development of numerical software. With about 175 built-in algorithms and a broad extensibility, it offers a complete tool-chain for fixed- and floating-point software and hardware design. Its features include on-the-fly faithful rounding, specialized approximation algorithms and extensive support for floating-point code generation.


Numerical software faithful rounding computer algebra development tool function approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American National Standards Institute (ANSI) and Institute of Electrical and Electronic Engineers (IEEE). IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std754-2008) (2008), Revised version of the IEEE Std754-1985 StandardGoogle Scholar
  2. 2.
    Arnold, M.G., Collange, S., Defour, D.: Implementing LNS using filtering units of GPUs. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (2010),
  3. 3.
    Chevillard, S., Joldeş, M., Lauter, C.: User’s Manual of the Sollya Tool, Release 2.0,
  4. 4.
    Chevillard, S., Lauter, C.: A certified infinite norm for the implementation of elementary functions. In: Proceedings of the Seventh International Conference on Quality Software, pp. 153–160 (2007)Google Scholar
  5. 5.
    Jeannerod, C.-P., Knochel, H., Monat, C., Revy, G., Villard, G.: A new binary floating-point division algorithm and its software implementation on the ST231 processor. In: Proceedings of the 19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, pp. 95–103 (June 2009)Google Scholar
  6. 6.
    Lauter, C.: Arrondi correct de fonctions mathématiques. Fonctions univariées et bivariées, certification et automatisation. PhD thesis, École Normale Superieure de Lyon, Université de Lyon (2008)Google Scholar
  7. 7.
    Lauter, C., de Dinechin, F.: Optimizing polynomials for floating-point implementation. In: Proceedings of the 8th Conference on Real Numbers and Computers, Santiago de Compostela, Spain, pp. 7–16 (July 2008)Google Scholar
  8. 8.
    Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. International Journal of Pure and Applied Mathematics 4(4), 379–456 (2003), zbMATHMathSciNetGoogle Scholar
  9. 9.
    Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial Mathematics, Philadelphia (1979)zbMATHGoogle Scholar
  10. 10.
    Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2009), Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvain Chevillard
    • 1
  • Mioara Joldeş
    • 2
  • Christoph Lauter
    • 2
  1. 1.INRIA, LORIA, Caramel Project-TeamVandœuvre-lès-Nancy CedexFrance
  2. 2.LIP (CNRS/ÉNS de Lyon/INRIA/Université de Lyon), Arénaire Project-TeamLyon Cedex 07France

Personalised recommendations