Sollya: An Environment for the Development of Numerical Codes
Conference paper
- 31 Citations
- 1 Mentions
- 1.2k Downloads
Abstract
Sollya has become a mature tool for the development of numerical software. With about 175 built-in algorithms and a broad extensibility, it offers a complete tool-chain for fixed- and floating-point software and hardware design. Its features include on-the-fly faithful rounding, specialized approximation algorithms and extensive support for floating-point code generation.
Keywords
Numerical software faithful rounding computer algebra development tool function approximationPreview
Unable to display preview. Download preview PDF.
References
- 1.American National Standards Institute (ANSI) and Institute of Electrical and Electronic Engineers (IEEE). IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std754-2008) (2008), Revised version of the IEEE Std754-1985 StandardGoogle Scholar
- 2.Arnold, M.G., Collange, S., Defour, D.: Implementing LNS using filtering units of GPUs. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (2010), http://hal.archives-ouvertes.fr/hal-00423434
- 3.Chevillard, S., Joldeş, M., Lauter, C.: User’s Manual of the Sollya Tool, Release 2.0, http://sollya.gforge.inria.fr/
- 4.Chevillard, S., Lauter, C.: A certified infinite norm for the implementation of elementary functions. In: Proceedings of the Seventh International Conference on Quality Software, pp. 153–160 (2007)Google Scholar
- 5.Jeannerod, C.-P., Knochel, H., Monat, C., Revy, G., Villard, G.: A new binary floating-point division algorithm and its software implementation on the ST231 processor. In: Proceedings of the 19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, pp. 95–103 (June 2009)Google Scholar
- 6.Lauter, C.: Arrondi correct de fonctions mathématiques. Fonctions univariées et bivariées, certification et automatisation. PhD thesis, École Normale Superieure de Lyon, Université de Lyon (2008)Google Scholar
- 7.Lauter, C., de Dinechin, F.: Optimizing polynomials for floating-point implementation. In: Proceedings of the 8th Conference on Real Numbers and Computers, Santiago de Compostela, Spain, pp. 7–16 (July 2008)Google Scholar
- 8.Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. International Journal of Pure and Applied Mathematics 4(4), 379–456 (2003), http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf zbMATHMathSciNetGoogle Scholar
- 9.Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial Mathematics, Philadelphia (1979)zbMATHGoogle Scholar
- 10.Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2009), http://www.springer.com/birkhauser/mathematics/book/978-0-8176-4704-9 Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010