Skip to main content

isl: An Integer Set Library for the Polyhedral Model

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6327)

Abstract

In compiler research, polytopes and related mathematical objects have been successfully used for several decades to represent and manipulate computer programs in an approach that has become known as the polyhedral model. The key insight is that the kernels of many compute-intensive applications are composed of loops with bounds that are affine combinations of symbolic constants and outer loop iterators. The iterations of a loop nest can then be represented as the integer points in a (parametric) polytope and manipulated as a whole, rather than as individual iterations. A similar reasoning holds for the elements of an array and for mappings between loop iterations and array elements.

Keywords

  • Integer Point
  • Basis Reduction
  • Vertex Enumeration
  • Polyhedral Model
  • Rational Polyhedron

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15582-6_49
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15582-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Bagnara, R., Hill, P., Zaffanella, E.: Exact join detection for convex polyhedra and other numerical abstractions. Comput. Geom. Theory Appl. 43(5), 453–473 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT 2004, pp. 7–16. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  4. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive closure of a union of affine integer tuple relations. In: COCOA 2009, pp. 98–109. Springer, Heidelberg (2009)

    Google Scholar 

  6. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra. Comput. Geom. 18(3), 141–154 (2001)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Chen, C.: Omega+ library (2009), http://www.cs.utah.edu/~chunchen/omega/

  8. Clauss, P., Fernandez, F.J., Gabervetsky, D., Verdoolaege, S.: Symbolic polynomial maximization over convex sets and its application to memory requirement estimation. IEEE Transactions on VLSI Systems 17(8), 983–996 (2009)

    CrossRef  Google Scholar 

  9. Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.F.: An implementation of the generalized basis reduction algorithm for integer programming. Cowles Foundation Discussion Papers 990, Cowles Foundation, Yale University (August 1991)

    Google Scholar 

  10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)

    CrossRef  MathSciNet  Google Scholar 

  11. Feautrier, P.: Parametric integer programming. Operationnelle/Operations Research 22(3), 243–268 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20(1), 23–53 (1991)

    MATH  CrossRef  Google Scholar 

  13. Free Software Foundation, Inc.: GMP, available from ftp://ftp.gnu.org/gnu/gmp

  14. Fukuda, K., Liebling, T.M., Lütolf, C.: Extended convex hull. In: Proceedings of the 12th Canadian Conference on Computational Geometry, pp. 57–63 (2000)

    Google Scholar 

  15. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)

    MATH  CrossRef  MathSciNet  Google Scholar 

  16. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The Omega library. Tech. rep., University of Maryland (November 1996)

    Google Scholar 

  17. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its applications. Int. J. Parallel Program. 24(6), 579–598 (1996)

    Google Scholar 

  18. Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra. Tech. rep., ICPS, Université Louis Pasteur de Strasbourg, France (March 1999)

    Google Scholar 

  19. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. International Journal of Parallel Programming 25(6), 525–549 (1997)

    CrossRef  Google Scholar 

  20. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM 8, 102–114 (1992)

    CrossRef  Google Scholar 

  21. Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A.M., Gao, X.S., Takayama, N. (eds.) ICMS 2002, pp. 330–340 (2002)

    Google Scholar 

  22. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine programs using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verdoolaege, S. (2010). isl: An Integer Set Library for the Polyhedral Model. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)