Skip to main content

isl: An Integer Set Library for the Polyhedral Model

  • Conference paper
Mathematical Software – ICMS 2010 (ICMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Included in the following conference series:

Abstract

In compiler research, polytopes and related mathematical objects have been successfully used for several decades to represent and manipulate computer programs in an approach that has become known as the polyhedral model. The key insight is that the kernels of many compute-intensive applications are composed of loops with bounds that are affine combinations of symbolic constants and outer loop iterators. The iterations of a loop nest can then be represented as the integer points in a (parametric) polytope and manipulated as a whole, rather than as individual iterations. A similar reasoning holds for the elements of an array and for mappings between loop iterations and array elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bagnara, R., Hill, P., Zaffanella, E.: Exact join detection for convex polyhedra and other numerical abstractions. Comput. Geom. Theory Appl. 43(5), 453–473 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT 2004, pp. 7–16. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  4. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive closure of a union of affine integer tuple relations. In: COCOA 2009, pp. 98–109. Springer, Heidelberg (2009)

    Google Scholar 

  6. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra. Comput. Geom. 18(3), 141–154 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, C.: Omega+ library (2009), http://www.cs.utah.edu/~chunchen/omega/

  8. Clauss, P., Fernandez, F.J., Gabervetsky, D., Verdoolaege, S.: Symbolic polynomial maximization over convex sets and its application to memory requirement estimation. IEEE Transactions on VLSI Systems 17(8), 983–996 (2009)

    Article  Google Scholar 

  9. Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.F.: An implementation of the generalized basis reduction algorithm for integer programming. Cowles Foundation Discussion Papers 990, Cowles Foundation, Yale University (August 1991)

    Google Scholar 

  10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)

    Article  MathSciNet  Google Scholar 

  11. Feautrier, P.: Parametric integer programming. Operationnelle/Operations Research 22(3), 243–268 (1988)

    MATH  MathSciNet  Google Scholar 

  12. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20(1), 23–53 (1991)

    Article  MATH  Google Scholar 

  13. Free Software Foundation, Inc.: GMP, available from ftp://ftp.gnu.org/gnu/gmp

  14. Fukuda, K., Liebling, T.M., Lütolf, C.: Extended convex hull. In: Proceedings of the 12th Canadian Conference on Computational Geometry, pp. 57–63 (2000)

    Google Scholar 

  15. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The Omega library. Tech. rep., University of Maryland (November 1996)

    Google Scholar 

  17. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its applications. Int. J. Parallel Program. 24(6), 579–598 (1996)

    Google Scholar 

  18. Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra. Tech. rep., ICPS, Université Louis Pasteur de Strasbourg, France (March 1999)

    Google Scholar 

  19. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. International Journal of Parallel Programming 25(6), 525–549 (1997)

    Article  Google Scholar 

  20. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM 8, 102–114 (1992)

    Article  Google Scholar 

  21. Rambau, J.: TOPCOM: Triangulations of point configurations and oriented matroids. In: Cohen, A.M., Gao, X.S., Takayama, N. (eds.) ICMS 2002, pp. 330–340 (2002)

    Google Scholar 

  22. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine programs using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verdoolaege, S. (2010). isl: An Integer Set Library for the Polyhedral Model. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics