Skip to main content

Fast Library for Number Theory: An Introduction

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6327)

Abstract

We discuss FLINT (Fast Library for Number Theory), a library to support computations in number theory, including highly optimised routines for polynomial arithmetic and linear algebra in exact rings.

Keywords

  • Number Theory
  • Polynomial Multiplication
  • High Level Language
  • Theta Series
  • Exact Ring

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15582-6_18
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15582-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnel, S., Bradshaw, R., Seljebotn, D.: Cython: C extensions for Python, http://www.cython.org/

  2. Belabas, K.: Pari/GP, http://pari.math.u-bordeaux.fr/

  3. Cannon, J., Steel, A., et al.: Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/

  4. Erocal, B., Stein, W.: The Sage Project: Unifying Free Mathematical Software to Create a Viable Alternative to Magma, Maple, Mathematica and Matlab, http://wstein.org/papers/icms/icms_2010.pdf , http://www.sagemath.org/

  5. Granlund, T.: GNU MP Bignum Library, http://gmplib.org/

  6. Hart, W., Harvey, D., et al.: Fast Library for Number Theory, http://www.flintlib.org/

  7. Hart, W., Novocin, A.: A practical univariate polynomial composition algorithm (2010) (preprint)

    Google Scholar 

  8. Hart, W., Novocin, A., van Hoeij, M.: Improved polynomial factorisation (2010) (preprint)

    Google Scholar 

  9. Hart, W., Tornaria, G., Watkins, M.: Congruent number theta coefficients to 1012. In: Gaudry, et al. (eds.) Proceedings of the Algorithmic Number Theory Symposium (ANTS IX). Springer, Heidelberg (to appear 2010)

    Google Scholar 

  10. Hart, W.: A One Line Factoring Algorithm (2010) (preprint)

    Google Scholar 

  11. Hart, W.: A refinement of Mulders’ polynomial short division algorithm (2007) (unpublished report)

    Google Scholar 

  12. Harvey, D.: A cache–friendly truncated FFT. Theor. Comput. Sci. 410, 2649–2658 (2009)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Harvey, D.: Faster polynomial multiplication via multipoint Kronecker substitution. J. Symb. Comp. 44, 1502–1510 (2009), http://www.cims.nyu.edu/~harvey/code/zn_poly/

    MATH  CrossRef  MathSciNet  Google Scholar 

  14. Mulders, T.: On short multiplication and division. AAECC 11(1), 69–88 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  15. Nguyen, P., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM Journal of Computation 39(3), 874–903 (2009), http://perso.ens-lyon.fr/damien.stehle/#software

    MATH  CrossRef  Google Scholar 

  16. Shoup, V.: NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hart, W.B. (2010). Fast Library for Number Theory: An Introduction. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)